
SHARING-AWARE LIVE MIGRATION OF VIRTUAL MACHINES

BY

ROJA ESWARAN

BE, Mepco Schlenk Engineering College, Anna University, 2018
MS, Binghamton University, 2020

DISSERTATION

Submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in Computer Science

in the Graduate School of
Binghamton University

State University of New York
2024

© Copyright by Roja Eswaran 2024

All Rights Reserved

Accepted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in Computer Science

in the Graduate School of
Binghamton University

State University of New York
2024

June 6, 2024

Prof. Kartik Gopalan, Chair and Advisor
Department of Computer Science, Binghamton University

Prof. Kanad Ghose, Committee Member
Department of Computer Science, Binghamton University

Prof. Yifan Zhang, Committee Member
Department of Computer Science, Binghamton University

Prof. Yu Chen, Outside Examiner
Department of Electrical and Computer Engineering,

Binghamton University

iii

iv

Abstract

One of the key challenges of cloud/edge computing is working with a limited amount

of resources available, especially memory and bandwidth. Virtual machines (VMs) can

ensure both isolation and efficient resource utilization. Live migration is a crucial tech-

nique to transfer running VMs from one physical node to another. This can occur either

between different hosts (inter-host) for load balancing, infrastructure maintenance, and

meeting service-level agreements or within the same host (intra-host) for updates to VM

management processes, bug fixes, and VM introspection.

Unfortunately, current live migration techniques are unaware of pre-existing mem-

ory sharing between VMs that are being migrated to the same destination. As a result,

shared pages are transferred and replicated multiple times at the destination, as if they

were separate pages, resulting in an expanded memory footprint at the destination. The

duplication of previously shared pages also results in longer migration times and in-

creased network traffic, potentially affecting the performance of other network-bound

workloads in the cluster. Further, current intra-host live migration unnecessarily copies

the pages within the same host, leading to memory spikes, instead of simply transferring

the ownership of pages.

In this dissertation, we describe efficient ways to incorporate sharing-awareness in

live migration of multiple VMs while avoiding memory and network resource con-

tention. For inter-host migration, our techniques rely on existing copy-on-write (COW)

v

sharing between VMs maintained by the host/hypervisor. This enables the transfer of

a copy of the page only once and preserves existing COW sharing by remapping pages

at the destination. For intra-host migration, our technique implements a mechanism to

identify shared pages and transfer their ownership instead of copying them. We proto-

type and evaluate our techniques in the KVM/QEMU virtualization platform. We show

that, besides preventing memory footprint expansion during migration, our techniques

also result in a shorter total migration time and less network traffic.

vi

Dedicated to Dad for also taking on the role of Mom and for all his other sacrifices.

vii

Acknowledgements

I would like to sincerely thank my advisor, Prof. Kartik Gopalan, for his invaluable

support throughout this journey. He is a brilliant researcher and an excellent mentor who

cares about the physical and mental well-being of his students. I am truly grateful for

this opportunity with him. I would like to thank my committee members Prof. Kanad

Ghose, Prof. Yifan Zhang, Prof. Yu Chen, for their valuable time and suggestions to

improve my dissertation.

I would like to express my gratitude to Dr. Pavan Balaji for providing me with the

opportunity for an internship at Argonne National Laboratory. This experience helped

me comprehend the practical implications of user-level vs. kernel-level threads which

was very helpful during the implementation of the prototypes. I would also like to ex-

press my gratitude to ZEDEDA, the company that manages and orchestrates distributed

edge solutions, for offering me an internship opportunity to explore the real-world im-

plications of edge computing. This experience provided me with valuable insights for

my publications. I would like to thank Kevin Cheng and Yongheng Li for their contri-

butions to my work Template-aware Live Migration of Virtual Machines. I would also

like to thank my fellow OSNET Lab member, Mingjie Yan for all his collaborations

with my work.

I wish to express my gratitude to my fellow OSNET Lab members Prathamesh Patil,

Atharva Ranade, and especially my friend Dr. Spoorti Doddamani, for helping me get

started with the basics of VMs and Live Migration. My Ph.D. wouldn’t be possible

without these people who offered me love and support: Kirupaa Thanani, Dr. Achutha

Lakshmi, Rohini, Sujith Anna, Saravanan Anna, Mrs. Denise Peterson, Yassine Man-

sour, Dr. Debaruti Roy, Dr. Meenakshy Jyothis, Gautham Pandiyan. I would also like to

viii

thank my adorable black short-haired domestic cat, Serene Eswaran, for her invaluable

emotional support. Additionally, I would like to extend my thanks to the Binghamton

University Counseling Center for helping me understand myself better, with special

appreciation for Ms. Nancy Lamberty and Ms. Portia Johnson.

I would like to express my gratitude to Prof. Suenghee Shin for accepting me into

his laboratory during my master’s, sparking my interest in systems research. I would

also like to thank Prof. Leslie Lander for his assistance with administrative procedures.

I would also like to thank my fiancé, Karthik Suresh Arulalan, for always being

there for me, anywhere, anytime. Finally, I would like to thank my grandmother, Mrs.

Rajamani, and Thanthai Periyar for being my inspirations in the educational journey. I

would love to dedicate this dissertation to my dad, Mr. Eswaran, who not only provided

me with the undergraduate college education he was denied but also so much more.

ix

Contents

List of Table xiv

List of Figures xix

List of Abbreviations xix

1 Introduction 1

1.1 Problem Statement: Lack of Sharing-awareness in Live Migration: . . . 3

1.2 Contributions . 5

1.3 Outline . 7

2 Background 8

2.1 KVM/QEMU and Live Migration . 8

2.2 Performance Metrics . 9

2.3 Migration Streams . 10

2.4 Live Migration Techniques . 11

2.4.1 Pre-copy Live Migration . 11

2.4.2 Post-copy Live Migration . 12

2.4.3 Hybrid Live Migration . 13

2.5 Existing COW optimizations . 14

2.5.1 VM Templating . 14

x

2.5.2 Kernel Samepage Merging (KSM) 16

2.5.3 mmap and COW Protection 18

2.6 Transferring Ownership of Pages . 18

2.7 Userfaultfd . 19

3 Inter-host Template-aware Live Migration 22

3.1 Problem Statement . 23

3.2 Contributions . 24

3.3 Design . 25

3.3.1 Seamless Templating . 28

3.3.2 Chained Templating . 28

3.3.3 Snapshot Overhead . 29

3.3.4 Memory-layout-aware and Parallel Snapshot 29

3.4 Implementation . 30

3.5 Evaluation . 32

3.6 Related Work . 37

3.7 Chapter Summary . 38

4 Intra-host Template-aware Live Migration 39

4.1 Problem Statement . 40

4.2 Contributions . 41

4.3 Problem Demonstration: Memory Spikes During Intra-host Live Mi-

gration . 42

4.4 Design of Intra-host TLM . 43

4.5 Implementation . 47

xi

4.5.1 Saving delta of Source VMs 47

4.5.2 Transferring ownership of delta from Source VMs 49

4.6 Evaluation . 50

4.6.1 Reduced Memory Footprint 51

4.6.2 Improvement in Total Migration Time 53

4.6.3 Reduction in Pages Transferred 55

4.6.4 Effect on Downtime . 57

4.7 Related Work . 58

4.8 Chapter Summary . 58

5 Sharing-aware Live Migration 60

5.1 Problem Statement . 60

5.2 Contributions . 61

5.3 Problem Demonstration . 62

5.4 SLM Design . 64

5.4.1 Identifying Page Type at Source 66

5.4.2 Preserving COW Sharing at Destination 68

5.5 Implementation . 70

5.5.1 Retrieval and Tracking of PFN 70

5.5.2 In-Memory Backend File . 71

5.5.3 Synchronization Across Multiple VMs 71

5.6 Evaluation . 72

5.6.1 Live Migration of Single VM 73

5.6.2 Memory Footprint of VMs After Migration 77

5.6.3 TMT, Downtime, and Network Traffic Reduction 77

xii

5.6.4 Network Bandwidth Using iPerf 79

5.6.5 Redis Cluster Benchmark . 82

5.6.6 LAMP/ApacheBench Response Time 84

5.6.7 Performance of SLM on templated VMs 86

5.7 Related Work . 89

5.8 Chapter Summary . 91

6 Conclusions and Future Directions 92

6.1 Inter-host Template-aware Live Migration of Virtual Machines 92

6.2 Intra-host Template-aware Live Migration of Virtual Machines 93

6.3 Sharing-aware Live Migration of Virtual Machines 93

xiii

List of Tables

5.1 Determining page type using PFN and VPN 67

xiv

List of Figures

1.1 Inter-host live migration transfers a VM across two different hosts. Intra-

host live migration transfers a host within a node, but from one VMM

to another. 2

2.1 VM Templating: Multiple VMs can be started from a common shared

template to reduce their startup times and initial memory footprint.

Memory pages that are dirtied by a VM (represented by deltas dk) are

not shared. 15

2.2 (a) Without KSM, each virtual page has its own physical page in RAM.

(b) With KSM, duplicated pages are COW-mapped to single physical

page in RAM. 17

2.3 (a) Without the bypass-memory flag, the memory of the VM is copied

again. (b) The bypass-memory flag skips copying the memory resulting

in the transfer of only the I/O, VCPU, and Device states. 20

3.1 Template-aware migration works by migrating only the delta pages dur-

ing migration. The shared VM template is available to the destination

either over a networked storage or transferred ahead of time before mi-

gration begins. 27

3.2 Time taken to take the memory snapshot of VMs varying in size. 28

xv

3.3 Memory usage of the memory template of varying VM size. 29

3.4 Snapshot copy time linearly increases with the working set size using

memcpy. 30

3.5 Lseek-copy performs better than both cp in terms of downtime. 31

3.6 Lseek-copy performs better than both cp and memcpy in terms of mem-

ory usage . 31

3.7 Memory footprint increase at destination when multiple templated VMs

are migrated using generic pre-copy 33

3.8 Memory footprint expansion problem in regular non-templated VMs at

destination after live migration using generic pre-copy. 33

3.9 Memory footprint of templated VMs at the source before migration and

destination after migration using Generic and TLM pre-copy. 34

3.10 Total migration time of multiple VMs started from the same template

and migrated concurrently using Generic and TLM pre-copy. 35

3.11 Downtime of multiple templated VMs migrated using Generic and TLM

Pre-copy . 36

3.12 Total Pages Transferred of multiple VMs started from the same template

and migrated concurrently using Generic and TLM pre-copy. 37

4.1 Memory footprint of templated VMs migrated within the same host us-

ing Generic TLM. 43

4.2 High-level overview of Intra-host TLM using userfaultfd. 44

4.3 Illustration of how Intra-host TLM transfers the ownership of delta

pages using userfaultfd mechanism. 45

xvi

4.4 Memory footprint of templated VMs at the source before migration and

destination after migration using Intra-host TLM 49

4.5 Total migration time of multiple VMs started from the same template

and migrated concurrently using Intra-host TLM 50

4.6 Memory footprint of templated VMs running write-intensive bench-

marks migration using (a) Generic TLM (b) Intra-host TLM. 52

4.7 Total Migration Time (TMT) of idle multiple templated VMs migrated

concurrently using Generic TLM and Intra-host TLM. 53

4.8 Total Migration Time (TMT) of multiple templated VMs running write-

intensive workload of varying size in MB migrated concurrently using

Generic TLM and Intra-host TLM. 54

4.9 DownTime (DT) of multiple idle templated VMs migrated concurrently

using Generic TLM and Intra-host TLM. 54

4.10 DownTime (DT) of multiple templated VMs running write-intensive

workload migrated concurrently using Generic TLM and Intra-host TLM. 55

4.11 Total 4KB pages transferred of multiple templated VMs running write-

intensive workload of varying size. 56

4.12 Idle Templated VMs . 56

4.13 Busy Templated VMs . 57

5.1 Memory footprint of VMs expands at destination after both pre-copy

and post-copy live migration, because pages shared among VMs at the

source are replicated for each VM at the destination. 63

5.2 SLM Algorithm . 64

xvii

5.3 SLM classifies pages of VMs at the source as Unique, Shared, and

Dirty. Shared pages are not re-transmitted; instead Destination COW-

maps them into a common in-memory backend file. 67

5.4 Memory footprint of virtual machine of varying size migrated using

Generic and SLM pre-copy and post-copy. 73

5.5 Memory footprint of virtual machine of varying size migrated using

Generic and SLM post-copy. 74

5.6 Total migration time of single VM of varying size migrated using generic,

SLM pre-copy and post-copy. 74

5.7 Total pages transferred of single VM migrated using generic, SLM pre-

copy and post-copy . 75

5.8 Comparison of memory footprint at source vs. destination when mul-

tiple VMs are migrated concurrently using generic vs. SLM (a) pre-

copy and (b) post-copy. We observe a significant increase in memory

footprint for generic pre-copy and generic post-copy vs. no significant

increase for SLM pre-copy and SLM post-copy. 76

5.9 Total migration time of multiple VMs concurrently migrated using generic

and SLM pre-copy and post-copy. 78

5.10 Pages transferred during concurrent migration of multiple VMs using

generic and SLM pre-copy and post-copy. 78

5.11 iPerf bandwidth for generic and SLM pre-copy. 80

5.12 iPerf bandwidth for generic and SLM post-copy. 80

5.13 Redis-cluster read throughput when migrating 3 VMs using generic and

SLM versions of pre-copy. 82

xviii

5.14 Redis-cluster read throughput when migrating 3 VMs using generic and

SLM versions of post-copy. 83

5.15 ApacheBench response times for generic and SLM pre-copy 85

5.16 ApacheBench response times for generic and SLM post-copy 85

5.17 Memory footprint of templated VMs at the source before migration and

destination after migration using generic, TLM and SLM pre-copy. . . 87

5.18 Total migration time of multiple VMs started from the same template

and migrated concurrently using generic, TLM and SLM pre-copy. . . 88

5.19 Total pages transferred of multiple VMs started from the same template

and migrated concurrently using generic, TLM and SLM pre-copy. . . 89

xix

1 Introduction

In this chapter, we begin by presenting various scenarios of live migration tech-

niques and their respective use cases. We then discuss the limitations of current live

migration techniques, particularly their lack of awareness of existing Copy-On-Write

(COW) shared pages, and outline our contributions to address these limitations, fol-

lowed by an overview of the remaining sections of the dissertation.

Live migration, a critical technology within cloud computing infrastructure, facili-

tates the seamless transfer of active virtual machines (VMs) from one physical node to

another. While the naive way for relocating a VM from one node to another involves

employing a stop-and-copy mechanism, this approach extends the application’s down-

time, as the VM remains unavailable until the pages are copied to a new VM at the

destination and finally resuming the VM.

Live migration of VMs can occur within a data center’s local area network (LAN), or

between different data centers connected by a wide area network (WAN). In the former

case of migration within a data center, memory, virtual CPU (VCPU), and I/O states of

the VMs are transferred but, since disk images can be stored in a shared network file

system, there is no need to transfer the disk contents. In the latter case of migration

across data centers, in addition to transferring the memory, CPU, and I/O states, the

disk image must also be normally transferred.

In this dissertation, we focus on live migration within a data center without the need

1

Source Host

VM

Mem

I/O
vCPU
Device

VM

Virtual Disk
Destination
Host

VM VM

Virtual Disk

Mem

Inter-host

I/O
vCPU
Device

Intra-host

Figure 1.1: Inter-host live migration transfers a VM across two different hosts.
Intra-host live migration transfers a host within a node, but from one VMM to another.

to migrate storage contents. In the discussion below, we note that each VM is typically

managed by an external process, which we call a VM Monitor (VMM), that coordinates

the lifecycle of the VM from it’s creation and execution to termination. Within a data

center, we consider two scenarios for live migration as shown in Figure 1.1:

1. Inter-host live migration: This involves relocating a VM from one host (called

the source host) to another (called the destination host) within the same data cen-

ter. Inter-host live migration is widely used for a variety of purposes, such as load

balancing [2, 70, 20], infrastructure maintenance, meeting service level agree-

ments [56], security-related updates, energy savings [77], hardware failure and

seamless maintenance of physical edge nodes. Inter-host migration typically in-

volves establishing a TCP connection between VMMs at the source and destina-

tion hosts and migrating the VCPU, memory, and I/O states of the VM. However,

virtual disk image remains available to the VM over the network and may not

necessarily be transferred.

In the context of this dissertation, multiple co-located VMs may often need to be

2

migrated together to the same destination host for various reasons. For example,

multiple tightly-coupled VMs that run different components of a multi-tier appli-

cation [31] may require to be migrated together to the same destination machine

to maintain low inter-VM communication latency [80, 42, 68, 37, 47] or to meet

other performance targets [84]. Additionally, physical server availability, hard-

ware availability, and multi-tenancy limitations may necessitate the migration of

co-located VMs to the same destination machine.

2. Intra-host live migration: This type of migration involves moving a VM within

the same host. To understand why one might want to migrate a VM within the

same host, consider situations where the VMM needs to be replaced, such as due

to bugs, software upgrades or, less commonly, for VM introspection [29, 14, 82].

In such cases, the VM can be live migrated from the old VMM to a new VMM

within the same host, or what we call intra-host live migration. While intra-host

migration can also be accomplished using the standard techniques used in inter-

host migration, the fact that VM is being migration within the same host lends

itself to certain useful optimizations. For example, as we propose later in this

dissertation, the VM memory pages can be transferred from one VMM to another

by transferring the ownership of the pages, instead of copying the pages.

1.1 Problem Statement: Lack of Sharing-awareness in Live Migra-

tion:

COW page sharing (both within a VM and across co-located VMs) is often used by

the hypervisor’s memory management system to reduce the collective memory footprint

by sharing identical pages whenever doing so is feasible and safe.

3

An example where inter-VM page sharing is employed is in a technique called VM

Templating. Instantiating a VM from scratch typically takes a long time because it in-

volves initialization of software, guest OS, and virtual hardware, including time to load

the corresponding contents to memory from the disk. VM templating allows multiple

new VM instances to be quickly instantiated from a single pre-checkpointed VM image

(or template). Figure 2.1 shows the steps involved in instantiating VMs from a template

image. First step is to save a custom VM template as a snapshot of a pre-booted VM

that is pre-initialized with necessary software. The template image can be pre-loaded

into memory to reduce disk access latency. Next step is to quickly instantiate mul-

tiple VM instances from the common template image by mapping the base template

image COW into the memory of each new VM instance. This is essentially a variant

of a typical checkpoint-restore operation. As VMs execute and write to (dirty) different

pages of their memory, those pages are copied for the respective VM, and their memory

footprints diverge over time.

Another example of COW page sharing among co-located VMs is a technique called

Kernel Samepage Merging (KSM) [1], which is a Linux kernel feature that identifies

identical memory pages among VMs (that run the same guest OS or similar applica-

tions) and maps them to the same physical page through COW page sharing. As KSM

gradually identifies and merges identical pages across different VMs, the collective

memory footprint of co-located VMs progressively decreases.

Unfortunately, current live VM migration techniques fail to consider pre-existing

COW page sharing within and across multiple templated and regular non-templated

VMs that are being migrated to the same destination. As a result, shared pages are

transferred and replicated multiple times at the destination, as if they were separate

4

pages, resulting in an expanded memory footprint at the destination. This expansion

can lead to migration failures when the destination lacks sufficient memory to accom-

modate the additional footprint of the VMs that were comfortably co-located at the

source. The duplication of COW-shared pages also results in longer migration times

and increased network traffic, potentially affecting the performance of other network-

bound workloads including distributed multi-tier applications.

In the context of intra-host live migration, while live migration techniques have been

extensively studied for migration between different hosts, there has been limited explo-

ration of these techniques in intra-host environments. Current live migration techniques

for both regular non-templated and templated VMs are inefficient when migrating VMs

within the same host as they involve unnecessary copying of pages causing spikes in

memory usage during migration. Besides memory contention, they also increase the to-

tal migration time, thereby prolonging the spikes in resource usage, which can adversely

impact application performance in nodes with limited memory.

1.2 Contributions

Inter-host Template-aware Live Migration: Traditional pre-copy live migration

is unaware of the underlying COW page sharing among templated VMs. Hence it

ends up transferring the shared base pages of the template multiple times. We propose

Inter-host Templating-aware Live Migration (TLM) which addresses this shortcoming

of pre-copy migration by ensuring that multiple templated VM instances maintain their

COW page sharing with the base template even at the destination node and transfers

only the delta pages that differ among various VM instances. TLM first tracks delta

(or dirty) pages for VM instances before migration. Then, during live migration, only

5

the delta pages are transferred for each instance. We implement a prototype of Inter-

host TLM in the KVM/QEMU [38] virtualization platform and evaluate it using several

benchmarks. Besides maintaining pre-existing page sharings among templated VMs

at the destination machine, TLM reduces the total migration time and network traffic

compared to normal migration, which transfers each VM instance individually.

Intra-host Template-aware Live Migration: We also propose Intra-host Template-

aware Live Migration of Virtual Machines or Intra-host TLM a new way to handle mi-

gration of templated VMs within the same host. The fundamental idea behind Intra-host

TLM is to transfer ownership of delta pages, rather than duplicating them during migra-

tion. Intra-host TLM utilizes a mechanism called userfaultfd [35, 45] to monitor delta

pages and save them in a backend-file. When live migration is started, the source only

sends the corresponding backend-file offset for the delta pages so that the destination

VM can claim ownership of those pages once the migration is complete. This technique

completely removes spike in memory usage during migration by eliminating copying

of memory pages.

Sharing-aware Live Migration: Finally, we present a more general Sharing-aware

Live Migration (SLM) of both templated and regular non-templated VMs for both pre-

copy and post-copy live migration techniques. SLM identifies and preserves all types

of pre-existing page sharings during live migration and works with any existing mem-

ory sharing mechanism such as KSM, VM templating, or others. We implement and

evaluate SLM in the KVM/QEMU [38] virtualization platform using several workloads

and microbenchmarks. Besides preserving pre-existing page sharings at the destination

machine, SLM also reduces the total migration time.

6

1.3 Outline

The remainder of the dissertation is structured as follows: In Chapter 2, we delve

into the background of live VM migration, different COW sharing optimizations, and

the userfaultfd mechanism. Chapter 3 introduces Inter-host Template-aware Live Mi-

gration (TLM), a technique tailored for the live migration of templated VMs that in-

volves transferring only the delta. Chapter 4 outlines Intra-host Template-aware Live

Migration (Intra-host TLM), a live migration technique that is aware of co-located mem-

ory and transfers the ownership of pages without duplicating them due to copying. In

Chapter 5, we introduce Sharing-aware Live Migration (SLM), a more comprehensive

approach that considers all COW optimizations, including KSM and VM templating for

both templated and regular non-templated VMs. Finally, Chapter 6 summarizes the key

findings and outlines potential directions for future research.

7

2 Background

This chapter starts with key performance metrics during live migration of multi-

ple VMs, followed by an explanation of various live migration techniques such as pre-

copy, post-copy, and hybrid using different migration streams. It then discusses existing

COW optimizations done by the host/hypervisor, including VM Templating and Ker-

nel Samepage Merging (KSM). Finally, the chapter concludes with background on the

userfaultfd mechanism for transferring page ownership.

2.1 KVM/QEMU and Live Migration

Here we provide a brief background about the KVM/QEMU [38] virtualization plat-

form which is used in this work for prototyping and evaluation of sharing-aware live

migration techniques. In KVM/QEMU, each VM is managed by a userspace VMM

process, called QEMU, which performs device emulation and various management

functions, including creation, execution, live migration, checkpointing, and termina-

tion. A kernel module, called KVM, implements the core hypervisor functionality.

KVM uses hardware virtualization features and coordinates with QEMU to execute the

VM in guest mode (or non-root mode).

To perform live migration, the QEMU process (which manages the VM being mi-

grated) at the source machine establishes a TCP connection with another QEMU pro-

cess at the destination machine. Then the memory, VCPU, I/O, and optionally storage,

8

states of the VM are transferred from the source QEMU to the destination QEMU over

this TCP connection. Depending on the mode of live migration, the VM either contin-

ues to execute at the source machine (pre-copy migration), or at the destination machine

(post-copy) during live migration.

2.2 Performance Metrics

Our key performance metrics for evaluation are as follows:

1. Memory Usage: The collective memory footprint of the VMs at the source (be-

fore migration) and destination (after migration). This is measured using the free

command and includes the memory used by both the QEMU processes and the

VMs. Recording the use column value from the free command before and after

spawning a process gives the memory usage of that process.

2. Total Migration Time (TMT): The total migration time (TMT) refers to the time

from the start to the end of the entire migration process. For single VM migration,

in pre-copy, TMT is measured from the start of migration on the source machine

to when the VM resumes on the destination machine. In post-copy, it is measured

from the initiation of migration on the source to the release of the VM’s resources

at the source after all pages have been transferred. For multiple VM migration,

in pre-copy, TMT is calculated from the beginning of the first VM’s migration on

the source to the resumption of the last VM on the destination. In post-copy, it

is calculated from the start of the first VM’s migration to the release of the last

VM’s resources at the source.

3. Downtime: Downtime refers to the period during which a VM’s execution is

9

fully suspended during live migration. In pre-copy, downtime is used to trans-

fer the VM’s remaining Dirty pages, I/O device states, and VCPU states to the

destination. In post-copy, the processor state and the essential execution state

necessary to start the VM on the destination are transferred during downtime.

4. Network Traffic Reduction: The reduction in the total number of pages trans-

ferred during live migration by eliminating the transfer of COW-shared pages.

5. Application performance degradation: The extent to which live migration slows

down the performance of an application running inside VMs during migration.

In order to accurately measure TMT and downtime in QEMU, we employ a more pre-

cise method instead of solely relying on the source QEMU’s measurement (which we

found to be inaccurate). Specifically, we send UDP packets to a third, separate mea-

surement node, at the start of migration and at the end of migration. For downtime

measurement and pre-copy TMT measurement, the start message is sent from source

node and the end message is sent from the destination node, whereas for post-copy TMT

measurement, both messages are sent from the source node. The measurement node ob-

serves the arrival times of these packets using the tcpdump tool, and the difference in

these arrival times represents TMT or downtime. This method provides more accurate

timings, as the dedicated measurement node has a better view of the end-to-end live

migration timeline than the source node alone.

2.3 Migration Streams

QEMU uses a separate migration thread for transferring the pages. The migration

thread typically utilizes a byte stream format, allowing for transmission over various

10

transport mechanisms [64].

1. TCP Migration: Relying on TCP sockets for data transfer, this method is partic-

ularly well-suited for migrations between different hosts.

2. Unix Migration: It uses Unix sockets for migration.

3. exec Migration: This migration method utilizes standard input (stdin) and stan-

dard output (stdout) for data transfer, facilitated by a dedicated process. It’s par-

ticularly useful for migrating VMs within the same physical host.

4. fd Migration: QEMU leverages a file descriptor for migration irrespective of the

method used for opening the descriptor.

5. File Migration: QEMU supports file-based migration by accepting a designated

file path. Furthermore, a file offset feature enables management applications to

include their own metadata at the beginning of the file, ensuring it remains sepa-

rate from QEMU’s migration data.

2.4 Live Migration Techniques

2.4.1 Pre-copy Live Migration

The pre-copy live migration [8, 57] is the most common technique to migrate VMs

from a source machine to a destination machine. It works by first transferring the VM’s

memory pages to the destination, even as the VM continues running at the source,

and then transfers the CPU execution state at the end; hence the name pre-copy which

means to transfer memory before CPU state. However, as the VM’s memory is being

transferred, its virtual CPUs (VCPUs) may write to previously transferred pages, thus

dirtying them again and requiring their retransmission.

11

For the traditional pre-copy technique, the VM’s memory is transferred over mul-

tiple rounds. The first pre-copy round is the longest since it transfers all pages of the

VM. The second round transfers only the pages dirtied in the first round; the third stage

transfers only pages dirtied from the second round, and so forth. When the number

of remaining dirtied pages is small enough, the migration process switches to the final

downtime stage in which all the VCPUs of the VM are paused at the source, and the

remaining dirtied pages, VCPU states, and I/O device states are sent to the destination.

Finally, the VCPUs are resumed at the destination, and the VM starts execution where

it left off at the source.

Pre-copy live migration uses TCP migration to transfer memory pages to the desti-

nation VM running on a different node. Regardless of whether the page is dirty (mod-

ified) or clean (unchanged), pre-copy employs the same mechanism. The source VM

writes the page content to the socket, and the pre-allocated memory on the destination

uses the guest physical address as a unique identifier while receiving pages. This allows

the destination to directly receive the page content into the correct memory location,

preventing memory corruption.

2.4.2 Post-copy Live Migration

Post-copy live migration [36, 28, 20] is another technique that first transfers a VM’s

VCPUs to the destination, resumes them there, and then transfers the VM’s memory

pages from the source. The VM’s pages are transferred by two concurrent mechanisms:

(a) active-push of the pages from the source to the destination, with preference to pages

in the VM’s working set, and (b) remote demand-paging by the destination from the

source when a VM’s VCPU faults on a page that has not yet been transferred from the

source. Post-copy aims to reduce the number of remote page faults by pushing pages

12

before the VM accesses them at the destination. Since the VCPU state is transferred

and already running on the destination, neither active push nor demand paging will

encounter any dirty pages.

Userfaultfd mechanism is employed to resolve the faulted addresses using TCP mi-

gration stream [35]: Once the pages are received from the network socket at the desti-

nation, the migration thread copies the data from TCP socket into a temporary buffer,

unlike pre-copy where the pages are directly received into the guest physical address.

The fault-handler thread (userfaultfd) is used to map the temporary page to the guest

physical address for both active-push or demand-paging. During demand-paging, a

fault-handler thread actively polls for userfaultfd events. A page fault is generated

whenever the guest tries to access a page. Now, the fault-handler thread receives the

faulted address and generates -EAGAIN in case the page fault was already resolved us-

ing active push. Else, the fault-handler thread writes the faulted address to the network

socket, and the VCPU thread is paused until the fault-handler receives the page, maps

it to the faulted guest address, and finally resumes the VCPU thread.

2.4.3 Hybrid Live Migration

The hybrid live migration [71] involves combining both pre-copy and post-copy

techniques to harness the benefits of both approaches. Depending on the nature of the

application’s working set size, either pre-copy or post-copy is chosen to optimize the

total migration time, total pages transferred, and application performance. During the

first few fixed number of rounds, hybrid migration utilizes the pre-copy feature, where

the source sends pages over multiple rounds using dirty page tracking. Subsequently,

it switches to post-copy to transfer any remaining pages. This approach reduces re-

transmission of dirty pages during pre-copy and also reduces network faults during

13

post-copy.

2.5 Existing COW optimizations

Copy-on-Write (COW) is a memory management optimization technique employed

by operating systems. It prioritizes efficiency by initially avoiding duplicate data cre-

ation. Instead, multiple processes share a single reference to the data. When a process

attempts to modify the shared data, COW springs into action. It creates a separate copy

of the data for the modifying process, effectively ”cutting off” the shared reference. This

ensures that the original data remains untouched, and any further changes occur on the

newly allocated copy. Various COW optimizations performed by the host/hypervisor

are described below.

2.5.1 VM Templating

Instantiating a VM from scratch typically takes a long time because it involves ini-

tialization of software, guest OS, and virtual hardware, including time to load the corre-

sponding contents to memory from the disk. VM templating allows multiple new VM

instances to be quickly instantiated from a single pre-checkpointed VM image (or tem-

plate) [60]. Figure 2.1 shows the steps involved in instantiating VMs from a template

image. First step is to save a custom VM template as a snapshot of a pre-booted VM

that is pre-initialized with necessary software. The template image can be pre-loaded

into memory to reduce disk access latency. Next step is to quickly instantiate multiple

VM instances from the common template image by mapping the base template image

COW into the memory of each new VM instance. This is essentially a variant of a typi-

cal checkpoint-restore operation, where we checkpoint the base image once and restore

it multiple times for concurrent VM instances. While COW allows efficient deploy-

14

Host OS

RAM

d1

d2 d3

dn

VM1 VM2 VM3 VMn...

Source Host

Figure 2.1: VM Templating: Multiple VMs can be started from a common shared
template to reduce their startup times and initial memory footprint. Memory pages that
are dirtied by a VM (represented by deltas dk) are not shared.

15

ment of VMs from a template, modifications (deltas) by individual VMs cause them to

diverge from the template over time. This reduces the memory efficiency advantage of

templating.

2.5.2 Kernel Samepage Merging (KSM)

Kernel Samepage Merging (KSM) [16] is a technique which performs memory

deduplication among co-located VMs to fit more VMs into physical memory. Many

duplicated pages exist when the same guest OS and applications run in different co-

located VMs. Without KSM, as shown in Figure 2.2(a), multiple identical virtual pages

of VMs are mapped to their own physical pages resulting in increased memory usage.

In contrast, KSM regularly scans the memory of all VMs and identifies identical pages

using red-black trees. When identical pages are found, KSM replaces them with a single

COW-shared page, as shown in Figure 2.2(b).

The ksmd daemon [16], also known as the KSM daemon, conducts periodic scans

on designated regions of user memory with the primary aim of identifying pages con-

taining identical content and replacing them with a single write-protected page. KSM

only operates on those areas of address space which an application has advised to be

likely candidates for merging, by using the madvise system call. The number of pages

that KSM scans in a single pass and the time between the passes are configurable; this

enables the administrator to adjust the aggressiveness with which KSM uses CPU re-

sources to identify identical pages. More aggressive settings allow KSM to converge

to a smaller memory footprint faster, but at the expense of potentially affecting VMs’

performance. It’s important to note that KSM exclusively consolidates anonymous (pri-

vate) pages and doesn’t merge page cache (file) pages.

16

VM_nVM_2VM_1

Host

RAMKSM
(a) KSM Turned-off

VM_nVM_2VM_1

Host

RAMKSM
(b) KSM Turned-on

Figure 2.2: (a) Without KSM, each virtual page has its own physical page in RAM. (b)
With KSM, duplicated pages are COW-mapped to single physical page in RAM.

17

2.5.3 mmap and COW Protection

In this subsection, we focus on manually establishing COW protection for shared

pages. Memory mapping using mmap system call allows us to map a file (or a shared

memory object) to a calling process’ virtual address space. In this system call, the

address specifies the base address for the mapping, and offset specifies the starting

byte location in the backend file into which the process’s virtual address is mapped.

Once mapped, the process can access the mapped region as if it’s accessing its local

memory [46, 65].

If MAP PRIVATE option is used, the region of the backend file is mapped to the

virtual address with COW protection. When the process tries to write to such a virtual

page, the OS allocates a new page to write to; the corresponding changes are private to

the process and not committed to the backend file. If the file is mapped to the virtual

address using the MAP SHARED option, it is written back to the backend file whenever

the process dirties the virtual page. By default, if the addr parameter is set to NULL,

the operating system assigns a virtual address to the newly mapped region. To specify

a fixed address for the mapped region, use the MAP FIXED flag.

2.6 Transferring Ownership of Pages

The intra-host VM migration is especially relevant when dealing with a VM that

requires maintenance, upgrades, or recovery from failures, necessitating the migration

of its hosted processes. In contrast to inter-host migration, it’s possible to avoid trans-

ferring the memory state by using the memory backend-file and bypass-memory flag as

shown in Figure 2.3 (b). Here is the process for VM migration within the same node

without any copying of pages:

18

1. Start the source VM with the memory backend-file [22].

2. Launch the destination QEMU in incoming mode, utilizing the same memory

backend-file as the source. Since the destination is in incoming mode, it refrains

from writing anything to the backend-file, preventing memory corruption.

3. Enable the bypass-memory flag before migration. This prompts QEMU to skip

the memory transfer during pre-copy migration.

4. Initiate the migration. With the bypass-memory flag, pre-copy completely skips

the initial and iterative pre-copy rounds, proceeding directly to the downtime

phase, where it solely transfers the device and VCPU state.

2.7 Userfaultfd

The conventional approach for detecting page faults involves the use of kernel mod-

ules. However, the userfaultfd [35, 45] offers user processes the ability to capture page

faults and instruct the kernel on how to handle them through the ioctl interface. To

capture these faults, the following steps should be followed:

1. Register the specific address space region for which page faults should be trig-

gered. The following modes should be used depending on the type of the pages.

In QEMU, this memory registration for userfaultfd happens during virtual ma-

chine initialization. At this stage, the VCPU threads are not yet running.

• To provoke page faults for unallocated pages, use UFFDIO REGISTER MODE MISSING.

• To provoke page faults when attempting to write write-protected pages, use

UFFDIO REGISTER MODE WP.

19

Host

VM

I/O
vCPU
Device

VM

Virtual
Disk

Intra-host

RAM

Mem

(a) Disabling bypass-memory

Host

VM

I/O
vCPU
Device

VM

Virtual
Disk

Intra-host

RAM

(1)

(3)

(2)

(4)bypass-
memory

tmpfs

(b) Enabling bypass-memory

Figure 2.3: (a) Without the bypass-memory flag, the memory of the VM is copied
again. (b) The bypass-memory flag skips copying the memory resulting in the transfer
of only the I/O, VCPU, and Device states.

20

• To induce page faults for already populated pages, opt for UFFDIO REGISTER

MODE MINOR.

2. Once a fault is triggered, the faulting thread can be either suspended or woken up

again based on the above mode flags. To wake up a suspended faulting thread, an

ioctl request must be made with the appropriate parameters. Depending on the

registered page type, the parameter passed with ioctl request may vary:

• For unallocated pages, ioctl must be passed with UFFDIO COPY.

• For write-protected pages, ioctlmust be passed with UFFDIO WRITEPROTECT.

• For populated pages, ioctl must be passed with UFFDIO CONTINUE.

21

3 Inter-host Template-aware Live Migration

The widespread use of smart devices in fields like healthcare, transportation, and

social media is creating a large amount of data every day. Since these devices have

limitations in their resources, they send complex tasks to be processed in the cloud.

However, when tasks need to be completed quickly, using mobile cloud computing

isn’t the best choice. The arrival of 5G technology is pushing phone companies to

improve user experiences, leading to the growth of Multi-access Edge Computing envi-

ronments. Multi-access edge computing nodes offer an attractive option for executing

tasks where users require low latency and high bandwidth [43, 53]. Virtual machines

(VMs) can ensure both isolation and efficient resource utilization at the edge computing

infrastructure [52, 10, 87]. Live migration [8, 28] is a key technology in an edge com-

puting infrastructure that transfers running VMs from one physical node to another. It

is widely used for a variety of purposes, such as load balancing [2, 70, 20], meeting ser-

vice level agreements [56], energy savings [77], and seamless maintenance of physical

edge nodes.

Multiple VMs that run different components of a distributed application may be

colocated on the same physical node to reduce their inter-VM communication costs [80,

51]. Typically, it can take a long time to boot up VMs from scratch from traditional

virtual disks because it involves OS and software initialization, including loading the

necessary content to memory. VM templates allow multiple new VM instances to be

22

quickly started up from a single pre-checkpointed VM image as described earlier in

Chapter 2 and shown in Figure 2.1. First one must save a custom VM template as

a snapshot of a pre-booted VM that is initialized with necessary software. Next one

can quickly restore multiple VM instances from the common template image instead of

the virtual disk, where the template image is mapped COW into the memory of each

VM instance. VM templating [40, 81, 60, 59] is one approach to quickly instantiate

multiple lightweight VMs from a common read-only image, called a template, which is

shared COW memory among the VM instances [1, 74]. Templated VM instances may

often need to be migrated together to the same destination node for various reasons.

For example, templated VM instances that run different components of a distributed

application may require migration to the same destination node to maintain low inter-

VM communication latency or to meet other QoS targets. Additionally, physical node

availability, hardware availability, and multi-tenancy limitations may necessitate the

migration of templated VM instances to the same destination node.

3.1 Problem Statement

Unfortunately, current live VM migration techniques do not consider page sharing

among templated VM instances that are being migrated to the same destination. As

a result, shared pages are transferred and replicated multiple times, as if they were

separate pages, resulting in an increase in memory pressure at the destination node. This

can also lead to migration failures when the edge destination lacks sufficient memory

to accommodate the expanded memory footprint of the VMs that were comfortably co-

located at the source. Replication of previously shared pages among VMs also results

in longer migration time and increased network traffic.

23

Previous approaches to reduce the transfer of duplicate pages during live migration

(such as [12, 24, 52, 10, 87] among others) use content-based hashing to detect iden-

tical pages and avoid their retransmission. However, they do not identify or maintain

preexisting COW mappings among VMs when pages are transferred to the destination.

Additionally, while hashing may be used to identify identical pages that are not COW-

shared, it is unnecessary and computationally expensive for COW-shared pages.

3.2 Contributions

In this chapter, we address this problem of memory footprint expansion of templated

VMs instances as they are live migrated together to a common destination node. The

contributions of this work are as follows:

1. We identify and demonstrate the problems caused by live migration being un-

aware of underlying page sharing among templated VM instances, leading to a

larger memory footprint at the destination, longer total migration time, and higher

network traffic.

2. We present Templating-aware Live Migration (TLM) which migrates templated

VM instances to a common destination while maintaining COW memory sharing

with the base template. We also discuss potential ways to account for other forms

of page sharing during live migration besides those due to templating.

3. We implement prototype of TLM in KVM/QEMU [38] virtualization platform

and evaluate it using several benchmarks. Besides maintaining preexisting page

sharings among templated VMs at the destination machine, TLM reduces the total

migration time by up to 95.37% and network traffic by up to 92.15%.

24

In the rest of this chapter, we first present the design, implementation, and evaluation

of TLM. The chapter concludes with a discussion of related work and summary of

results.

3.3 Design

Traditional pre-copy live migration is unaware of the underlying COW page shar-

ing among templated VMs. Hence it ends up transferring the shared base pages of the

template multiple times. We propose Template-aware Live Migration (TLM) which ad-

dresses this shortcoming of pre-copy migration by ensuring that multiple templated VM

instances maintain their COW page sharing with the base template even at the destina-

tion node and transfers only the delta pages that differ among various VM instances.

TLM requires that we first track delta (or dirty) pages for VM instances before migra-

tion. Then, during TLM, only the delta pages are transferred for each instance. We

describe these steps below in greater detail.

Delta Tracking before Migration: As mentioned earlier, the common template

image is COW-mapped into each VM’s memory. The template image could also be

pre-loaded into the host’s memory (such as into tmpfs [69]) to minimize access latency.

When a VM tries to write to a COW-mapped page, a write fault is triggered and the

hypervisor allocates a new private page into which the original page is copied and the

VM can write to. We call these new pages delta pages, which are stored separately from

the shared template.

TLM uses a dirty page tracking mechanism [19] to keep track of the delta pages

of the templated VMs before the migration begins [20]. Templated VMs have COW

access to the base pages of the template, so a write by a VM instance to a COW-shared

25

page triggers a trap to the hypervisor (a KVM kernel module in QEMU/KVM), which

updates a dirty bitmap, and finally grants write permission on the trapped page. Any

subsequent writes to the same page by the VM are no longer trapped until the migration

starts.

Live Migration: We assume that the base template image is already accessible at

the destination over network storage; if not, it could be transferred to the destination

once before live migration begins. Initially, at the destination, TLM maps the base

template image COW into the memory of each new VM instance. As illustrated in

Figure 3.1, TLM then exclusively transfers the delta pages from the source. These delta

pages replace the corresponding COW-mapped pages at the destination, resulting in

new memory allocations for the delta pages.

In each round of TLM, a user-space VMM, called QEMU, fetches the latest dirty

bitmap from KVM, similar to the conventional pre-copy approach. The delta pages in

each round are subsequently marked as read-only and sent to the destination. Eventu-

ally, downtime is initiated when a minimal number of delta pages remain. At this point,

the VCPUs are paused, the remaining VM states are transferred, and the templated VM

instances are then resumed at the destination. Multiple VMs that started from the same

base template are migrated concurrently.

With TLM, these VMs preserve the same collective memory footprint at the desti-

nation as they did the source. When compared to traditional pre-copy migration, TLM

has a shorter total migration time because, besides the one-time transfer of base tem-

plate image, only the delta pages need to be transferred to the destination during live

migration.

TLM also supports live migration of hotplugged devices. The pages of these hot-

26

Host OS

RAM

d1

d2
d3

dn

Host OS

RAM

d2
d3

d1
dn

Migration

VM1 VM2 VM3 VMn VM3VM2VM1 VMn... ...

Source Destination

Figure 3.1: Template-aware migration works by migrating only the delta pages dur-
ing migration. The shared VM template is available to the destination either over a
networked storage or transferred ahead of time before migration begins.

plugged devices are write-protected so there is a trap to the hypervisor whenever the

VM access the pages of the hot-plugged device. With hotplugging [48], during the first

round of TLM, we transfer all the dirtied pages of hotplugged devices. The subsequent

rounds transfer the additional dirty pages from the hotplugged devices. Multiple VMs

that started from the same base template are migrated concurrently.

The current VM templating has following limitations:

1. In the existing VM templating mechanism in KVM/QEMU, once a template im-

age is created from a VM, the VM is terminated. This prevents the user from

creating multiple templates at different stages of the VM’s execution. We inves-

tigated a seamless VM templating feature using which multiple templates can be

created during a VM’s execution.

2. Existing VM templating mechanism has a limitation in that a VM initialized from

an existing template cannot be templated again due to its existing dependencies on

27

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

2 4 6 8 10

B
a
c
k
u
p

 T
im
e
(m
s
)

Varying VM Size(GB)

Idle VM

Figure 3.2: Time taken to take the memory snapshot of VMs varying in size.

the original template. We investigated chained templating feature that identifies

the root causes of this limitation and ways to address the limitation.

3.3.1 Seamless Templating

Once the snapshot is created, the QEMU/KVM pauses the VCPU which prevents

the templated VM to create multiple templates. Resuming the VCPU automatically

after a snapshot is created enables the seamless templating feature.

3.3.2 Chained Templating

To create a snapshot from a VM, we need the memory backend and state files. The

VMs booted from the existing template only have read access to the backend file, so the

guest writes are not reflected on the underlying memory backend file, preventing them

from creating a new template. By giving write access to the memory backend file, we

were able to create new templates from the templated VMs.

28

 0

 100

 200

 300

 400

 500

 600

 700

2 4 6 8 10

M
e
m
o
ry

 T
e
m
p
la
te

 S
iz
e
(M
B
)

Varying VM Size(GB)

Idle VM

Figure 3.3: Memory usage of the memory template of varying VM size.

3.3.3 Snapshot Overhead

We allocated dedicated memory backend files and the VM state files for each tem-

plate to maintain consistency and robustness. Initially, we used the cp command with

bash to take the subsequent snapshots, which caused a substantial downtime, as shown

in Figure 3.2 and 3.3, for downtime and memory usage. So we further optimized it by

developing memory-layout-aware and parallel snapshot mechanisms.

3.3.4 Memory-layout-aware and Parallel Snapshot

For both Seamless and Chained templating, when snapshots are taken during the

downtime, the VM’s downtime can be significantly larger. Figure 3.4 shows that the

snapshot copy duration increases almost linearly with the size of the snapshot. In ad-

dition, calling cp from a bash script adds a few milliseconds overhead. To reduce

this downtime, we first integrated the snapshot mechanism within QEMU, instead of

calling the cp command from the bash script. Next, instead of using memcpy(), which

29

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

0.5 1 2 4 6 8 10

A
v
e
ra
g
e

 T
im
e

 T
a
k
e
n

 b
y
 m
e
m
c
p
y
(m
s
)

Working Set(GB)

Idle VM

Figure 3.4: Snapshot copy time linearly increases with the working set size using
memcpy.

copies the entire 8GB snapshot, we used the lseek() system call to seek and copy only

the valid (allocated) data regions while skipping holes (unused/unallocated memory re-

gions). This optimization significantly reduced the downtime.

Our second optimization was to parallelize the snapshot operation using multiple

threads. We have divided the snapshot memory equally among multiple threads. Each

thread performs lseek-based memory copy within its independent regions. In this man-

ner, with the support of multi-threading, we reduced the VM downtime further, as

shown in Figures 3.5 and 3.6 for downtime and memory usage.

3.4 Implementation

TLM uses dirty page tracking mechanism to keep track of the delta pages of the

templated VMs before the migration begins. Templated VMs have read-only access

to the template, so a write to a page triggers a trap to KVM, which updates a dirty

30

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 0 5 10 15 20

D
o
w
n
tim

e
(m
s
)

VM Size(GB)

CP
lseek(1 Thread)
lseek(4 Threads)

Figure 3.5: Lseek-copy performs better than both cp in terms of downtime.

 0

 500

 1000

 1500

 2000

 2500

2 6 10 14 18

M
e
m
o
ry

 U
s
a
g
e
(M
B
)

Varying VM Size(GB)

CP
lseek

Figure 3.6: Lseek-copy performs better than both cp and memcpy in terms of memory
usage

31

bitmap, and finally grants write permission on the trapped page. Any subsequent writes

to the same pages are no longer trapped by KVM until the migration starts. Once live

migration starts, TLM transfers only the delta pages that it had recorded earlier. This

is unlike traditional pre-copy which transfers the entire memory of the VM during its

first iteration. At the beginning of every round in TLM, QEMU retrieves the latest dirty

bitmap from KVM, just like traditional pre-copy. The delta pages in each round are

marked read-only again and transmitted to the destination. During downtime, TLM

transfers any remaining dirty pages using stop-and-copy.

Limitation of TLM: While the above TLM approach works well in efficiently live

migrating multiple templated VMs, we realized that the problem of sharing-awareness

in live migration extends beyond just templated VMs. Specifically, TLM does not ac-

count for pages shared among VMs due to other memory sharing mechanisms besides

templating, such as memory deduplication performed by Kernel Samepage Merging

(KSM) [1] in Linux, or simple COW mappings due to process fork and file I/O oper-

ations. Figure 3.8 shows that memory expansion problem during live migration exists

even for regular non-templated VMs, though to a lesser extent than templated VMs

shown in Figure 3.7. The SLM technique, presented in the Chapter 5, improves upon

TLM and retains all existing COW sharing during migration irrespective of the under-

lying memory optimization technique.

3.5 Evaluation

We evaluated the performance of TLM against generic pre-copy live migration.

Our experimental setup consists of three machines with two Intel Xeon E5-2620 v2

processors and 128GB DRAM. We implemented TLM versions of pre-copy in the

32

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1 2 3 4 5

M
e
m

o
ry

 U
sa

g
e
(M

B
)

Number of 8GB VMs

Source
Destination

Figure 3.7: Memory footprint increase at destination when multiple templated VMs
are migrated using generic pre-copy

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1 2 3 4 5

M
e
m

o
ry

 U
sa

g
e
(M

B
)

Number of 8GB VMs

Source
Destination

Figure 3.8: Memory footprint expansion problem in regular non-templated VMs at
destination after live migration using generic pre-copy.

33

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1 2 3 4 5

M
e
m

o
ry

 U
sa

g
e
(M

B
)

Number of 8GB VMs

Source
Destination(Generic Pre-copy)

Destination(TLM Pre-copy)

Figure 3.9: Memory footprint of templated VMs at the source before migration and
destination after migration using Generic and TLM pre-copy.

KVM/QEMU [38] virtualization platform on Linux. We modified QEMU’s default

pre-copy algorithms, with no changes to the guest operating system. Each experiment

was repeated at least five times on idle VMs to compute average values

Figure 3.9 shows the memory footprint of templated VMs migrated using generic

and TLM pre-copy. The X-axis shows the number of VMs started from the same tem-

plate, and the Y-axis shows their memory usage before migration at the source and after

migration at the destination using free command. With increasing number of VMs,

generic pre-copy migration results in significant expansion of memory footprint at the

destination since it is unaware of memory sharing with the underlying template image.

Hence pages that were originally shared with the base template at the source are trans-

ferred multiple times in addition to delta pages. In contrast TLM preserves the original

memory footprint of templated VMs at the destination irrespective of the number of

VMs started using the template, because shared pages are transferred only once and

34

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

1 2 3 4 5

To
ta

l
M

ig
ra

ti
o
n
 T

im
e
 (

m
s)

Number of 8GB VMs

Generic Pre-copy
TLM Pre-copy

Figure 3.10: Total migration time of multiple VMs started from the same template and
migrated concurrently using Generic and TLM pre-copy.

remapped to a common page at the destination.

Figure 3.10 shows the total migration time of multiple templated VMs using generic

and TLM pre-copy. The X-axis indicates the number of VMs booted from the same

template to be migrated concurrently. The Y-axis shows the total migration time. TLM

reduces the total migration time up to 94% when considering only the transfer of delta

pages.

Figure 3.11 shows that the downtime experienced during live migration of templated

VMs is slightly longer (by a few tens of milliseconds) than that of generic VMs, even

when the same number of dirty pages are transferred within the downtime window. The

X-axis shows the number of pending pages transferred during the downtime and the

Y-axis shows the downtime. Upon closer examination of the code, we identified that

the increased downtime is influenced by the destination component of live migration.

After the final packet arrives at the destination, the vm start() function to resume the

35

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0 1 2 3 4 5 6 7 8 9 10

D
o
w

n
ti

m
e
(m

s)

Pending Size(MB)

Generic Pre-copy
TLM Pre-copy

Figure 3.11: Downtime of multiple templated VMs migrated using Generic and TLM
Pre-copy

VM can introduce variable overhead during the migration of both templated and generic

VMs. However, in the case of templated VMs, the vm start() function tends to result

in higher resumption times more frequently. Addressing the downtime issue involves

the VCPU thread invocation which will be addressed in our future work. Nonethe-

less, the downtime can still be minimized by configuring a smaller pending page count

threshold for initiating the downtime phase.

Figure 3.12 shows the total 4KB pages transferred of multiple templated VMs using

generic and TLM pre-copy. The X-axis indicates the number of templated VMs to

be migrated concurrently. The Y-axis shows the total pages transferred during live

migration. TLM significantly reduces the total pages transferred since it only transfers

the delta pages.

36

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

1 2 3 4 5

To
ta

l
Pa

g
e
s

Tr
a
n

sf
e
rr

e
d

Number of 8GB VMs

Generic Pre-copy
TLM Pre-copy

Figure 3.12: Total Pages Transferred of multiple VMs started from the same template
and migrated concurrently using Generic and TLM pre-copy.

3.6 Related Work

Several VM templating techniques have been developed to efficiently launch mul-

tiple lightweight VMs from a common COW template image [40, 79, 81, 59]. VM

templating can reduce the memory pressure and instantiation time of VMs on resource

constrained edge computing nodes. To the best of our knowledge, these techniques

lack support for live migration for templated VMs while maintaining COW sharing at

the destination. Our TLM approach addresses this gap. Several studies have also at-

tempted to minimize the migration time of containers or VMs in distributed edge plat-

forms [52, 10, 87]. These efforts have employed techniques like delaying the transfer

of writable working sets, using lightweight file systems, applying delta encoding, com-

pressing data, and deduplicating identical pages. However, unlike TLM, these works

do not focus on preserving COW page sharings at the destination to prevent an increase

in memory footprint.

37

3.7 Chapter Summary

In this chapter, we addressed the problem that traditional live VM migration tech-

niques do not maintain page sharing among templated VM instances that are migrated

to the same destination nodes on edge platforms. This leads to increased memory foot-

print at a resource constrained destination node, longer migration time, and increased

network traffic. We presented the design, implementation, and evaluation of a technique

called TLM for pre-copy that retains the templating benefits at the destination after the

live migration. Our evaluation of TLM on the QEMU/KVM platform shows that TLM

not only avoids memory footprint expansion at the destination but also significantly

reduces the migration time and the amount of data transferred. The SLM technique,

presented in Chapter 5, improves upon TLM and incorporate other forms of inter-VM

page sharing besides those due to templating.

38

4 Intra-host Template-aware Live Migration

As discussed in the previous chapter, edge computing nodes may execute tasks

requiring low latency and high bandwidth [43, 53]. Edge nodes use VMs or con-

tainers encapsulated within VMs for security and isolation purposes. This approach

allows applications to leverage the security and performance isolation provided by

the VM while maximizing the provisioning and deployment capabilities inherent in

VMs [52, 72, 23, 54, 32, 78, 59, 10, 87].

Live migration [8, 28] plays a pivotal role in cloud computing infrastructure by

transferring running VMs from one physical node to another. This technique can be

employed for migration either between two different hosts (inter-host) for purposes

such as load balancing [2, 70, 20], meeting service level agreements [56], or within the

same host (intra-host) for patching/updating VMMs [62, 63], or for instrumentation and

taint analysis [82, 29].

At times, running VMs may require a replacement of the VMM (the QEMU process

in KVM/QEMU) for various reasons, such as feature updates, security patches, bugs,

etc. The conventional approach to tackle this problem involves terminating the VMs

in the production environment and conducting the replacement offline [29, 14, 82].

However, this approach results in significant downtime, adversely affecting the liveness

of the virtual machines. An better alternative is to update the VMM on-the-fly using

live migration. By live migrating a VM from an old VMM (the source) to a new VMM

39

(destination), the downtime of the VM during replacement can be reduced.

4.1 Problem Statement

While live migration techniques have been extensively studied for migration be-

tween different hosts, there has been limited exploration [73] of live migration in intra-

host environments. Current live migration techniques for both regular non-templated

and templated VMs are inefficient when migrating VMs within the same host as they

involve unnecessary copying of pages causing intermediate spikes in memory usage

during migration. Besides memory contention, they also increase the total migration

time, thereby prolonging the spikes in migration resource usage, which can adversely

impact application performance in nodes with limited memory.

Existing pre-copy live migration involves iteratively transferring memory pages to

the destination by copying them. This copying is necessary for migration between two

different hosts. However, using the above technique is inefficient for migration within

the same host, as it duplicates the memory pages, as shown in Figure 2.3 (a). This

duplication is unnecessary for intra-host migration; instead, all we need to do is transfer

the ownership of the memory pages from the source to the destination QEMU, which

can be achieved with the help of a bypass memory flag thereby improving memory

contention and total migration time, as shown in Figure 2.3 (b).

Our previous work Generic Template-aware Live Migration of Virtual Machines or

Generic TLM addresses the shortcoming of pre-copy intra-host migration by ensuring

that multiple VM instances maintain their COW page sharing with the base template

and transfers only the delta pages that differ among various VM instances. Generic

TLM requires that we first track delta (or dirty) pages for VM instances before migra-

40

tion. Then, during migration, only the delta pages are transferred for each instance.

However, a limitation arises when applying the Generic TLM technique for intra-host

live migration of templated VMs. Specifically, Generic TLM ends up copying delta

pages from the source QEMU to the destination QEMU, which is unnecessary when

both the QEMUs are present on the same host.

An earlier work by our group, Mwarp [73], addresses intra-host live migration of

containers by transferring ownership of containers from one VM to another without

copying pages. However, this solution is container-specific and cannot be applied to

VMs. Several live patching works related to hypervisors, such as those presented in [86,

13, 3], focus on replacing old hypervisors with new hypervisors without disrupting

VMs. But a drawback is that these techniques cannot be used for replacing VMMs

(such as QEMU) when live patches/updates need to be performed on the VMM.

4.2 Contributions

Contributions: We propose Intra-host Template-aware Live Migration of Virtual

Machines, or Intra-host TLM, as a new way to handle migration of templated VMs

within the same host. The fundamental idea behind Intra-host TLM is to transfer own-

ership of delta pages, which reside on the same host, rather than duplicating them during

migration. Intra-host TLM utilizes the userfaultfd mechanism [35, 45] to monitor delta

pages and save them in a backend file. When the migration is issued, the source VMM

only sends the corresponding offset in the backend file for delta pages so that the des-

tination QEMU can claim ownership of those pages once the migration is complete.

This technique completely eliminates intra-host transfer of delta pages over a TCP con-

nection reducing the spike in memory usage, and improving the total migration time

41

significantly. Our contributions are as follows:

1. We identify and demonstrate the problems of memory usage spikes during intra-

host live migration of templated VMs using Generic TLM.

2. We present Intra-host Template-aware Live Migration of VMs which migrates

templated VM instances to a common destination within the same host without

unnecessary memory footprint increase thereby reducing the total migration time.

3. We implement a prototype of Intra-host TLM in KVM/QEMU [38] virtualization

platform and evaluate it using several benchmarks. Besides reducing the memory

footprint, Intra-host TLM also significantly reduces the total migration time by

85%.

Outline: In the rest of this chapter, we first demonstrate the problem of migrating

templated VMs within the same host. Next, we present the design and implementation

of Intra-host TLM followed by its evaluation. The chapter concludes with a discussion

of related work and a summary of the results.

4.3 Problem Demonstration: Memory Spikes During Intra-host Live

Migration

In Figure 4.1, we show the problem that arises during the migration of templated

VMs using pre-copy within the same host. The X-axis represents the number of VMs

instantiated from a shared template that is being migrated, and the Y-axis represents

their collective memory footprint as measured by the free command in Linux. The

legend of the graph provides the following information: (a) represents the system mem-

ory before executing any QEMU (Q) or VM. (b) represents the system memory usage

42

 0

 1000

 2000

 3000

 4000

 5000

 6000

10 20 30 40 50

M
e
m

o
ry

 U
sa

g
e
(M

B
)

Number of 1GB VMs

B (a)
B + Q + VM (b)

B + Q + VM + Q' (c)
B + Q + VM + Q' + VM' (d)

B + Q' + VM' (e)

Figure 4.1: Memory footprint of templated VMs migrated within the same host using
Generic TLM.

after booting a VM using Q. (c) represents the system memory usage after initiating a

new Q’ in listening mode. (d) represents the system memory usage after live migration,

where Q, Q’, VM, and VM’ are all live. Finally, (e) represents the system memory state

after terminating Q and VM, leaving only Q’ and VM’ live. When using Generic TLM

for migration within the same node, there is an observable rise in the memory usage,

particularly evident with an increase in templated VM instances (c) and (d). This is

attributed to the duplication of delta pages during the migration process.

4.4 Design of Intra-host TLM

Intra-host TLM significantly mitigates this spike in memory usage by transferring

the ownership of delta pages instead of unnecessarily copying them over a TCP con-

nection. The outline of Intra-host TLM is described in Figure 4.2.

Preparation Stage – Step (1): The source QEMU registers the base template mem-

43

Source Host

VM VM

RAM

VM VM VM VM

Delta I/O, vCPU, Device Userfaultfd

(1)(1)(1)

(2) (2) (2)

(4)
(4)

(4)

(3) (3) (3)

Figure 4.2: High-level overview of Intra-host TLM using userfaultfd.

ory from QEMU using UFFIO REGISTER MODE WP with the help of userfaultfd. This is

the initial setup required for the VM instantiation.

We create a new thread in the source QEMU equipped with a fault handler for user-

faultfd, designed to continuously monitor write operations targeting the write-protected

base template pages. This mechanism ensures that any write attempts are promptly de-

tected and tracked by the fault handler. Lastly, we start the VCPUs of the VM. At this

point, the templated VM is up and ready to use.

The essential aspect of this process is that the base template remains write-protected

throughout. Consequently, any write operations to the base template will trigger the

fault handler thread which then records the identity delta pages. This information is

used by the subsequent steps.

Tracking Delta – Step (2): The fault handler thread operates in parallel with the

VCPU threads and is responsible for intercepting write operations on the base memory

44

Fault-handler Thread vCPU ThreadQEMU Thread

Register
RAMBlock for
userfaultfd

Running

Allocate new page &
Enable write permission

Polling for event

Event Detected:
WRITE FAULT

Write

Suspended

Wake-up vCPU Thread Running
Join
Polling thread

Initiate Migration

(1)

(1)

(2)
(3)

(5)
(4)

(7)
(6)

(8)

(9)

(a) Tracking the delta pages at the source QEMU using userfaultfd.

Migration Thread QEMU DestinationQEMU Source

Initiate Migration Listening Mode
Unregister RAMBlock
from userfaultfd

For each page, send
backend-file offset

For each page, receive
backend-file offset

Claim ownership of pages
Finish Migration

vCPU Running

(1)

Initiate DowntimevCPU Suspended

(1)

(2)

(3)

(4)

(2)

(6)
(5)

(7)

(b) Transferring the ownership of delta pages without copying.

Figure 4.3: Illustration of how Intra-host TLM transfers the ownership of delta pages
using userfaultfd mechanism.

45

template. When a write operation is trapped, the following steps are performed.

The VCPU pauses execution and the fault handler thread and identifies the next

available offset within the backend file to copy the content of the trapped write-protected

page. Simultaneously, it unmaps and remaps the trapped virtual address with a new

backend-file content using the mmap method with write permission, ensuring proper

tracking, isolation of the changes, and preventing future write-faults to the virtual ad-

dress. Any future writes to the page (including the trapped write) will be sent to the

new page mapped into the backend file.

When migrating multiple templated VMs, each VM possesses its own dedicated

backend-file to record delta changes.

Transferring Page Ownership – Steps (3) and (4): Our intra-host TLM exploits

the fact that both the source and destination QEMUs reside on the same host, eliminat-

ing the necessity to transfer any pages during the migration process.

Typically, the traditional pre-copy migration involves three distinct phases: The first

phase, referred to as setup, involves the preparation of RAM blocks and dirty bitmaps.

The second phase is an iterative stage focused on transferring dirty pages. Finally, the

last phase involves suspending the VM and transferring the remaining dirty pages, along

with VCPU, I/O, and device states, and resuming the VM at the destination. In our intra-

host TLM approach, we deliberately omit the second phase of iterative memory transfer

to prevent copying delta pages.

Intra-host TLM executes the following steps. When the migration command is is-

sued, the VMs immediately switch to the downtime phase. During downtime, we only

transfer the corresponding offsets of dirty pages in the backend file which had been

stored in the preparation stage. The destination VMs remap their virtual addresses to

46

the corresponding backend-file offset once they receive this information. Finally, we

end the migration by transferring the I/O, VCPU and device states before resuming the

VMs at the destination.

4.5 Implementation

4.5.1 Saving delta of Source VMs

Figure 4.3(a) shows the detailed steps involved in tracking delta pages using QEMU,

polling, and VCPU threads.

QEMU Thread: (1) The RAMBlocks, which constitute the VMs’ memory, must

be registered for the userfaultfd mechanism to intercept any future write operations.

Regardless of whether the VM is booted from a template or not, QEMU allocates the

memory chunk in RAMBlocks [61]. For regular VMs, RAMBlocks are part of anony-

mous pages, and for templated VMs, they form part of the backend file. To enable

userfaultfd to capture all writes to the backend file, the RAMBlocks associated with the

backend file need to be registered with userfaultfd.

Memory template is a unique type of backend file; merely registering it with UFFDIO REGISTER MODE WP

is insufficient due to the presence of unallocated pages. Registering unallocated pages

with this mode results in a write fault. To address this issue, we preallocate the template

during its creation

The source node prepares an in-memory backend file into which the content of the

write-protected page is copied into. The backend file is stored in the main memory using

the tmpfs file system to avoid the latency of accessing the virtual disk. Sometimes the

OS uses lazy allocation when creating a backend file of large size. Doing so can result

in bus errors when unallocated file regions are memory mapped to the virtual address

47

for unique pages. We eliminated the problem by writing zeros into the backend file

before mapping the area for storing unique page contents.

Polling Thread (or Page Fault Handler Thread): In step (1), the page fault han-

dler thread is spawned and continuously polls in parallel for UFFD EVENT PAGEFAULT

to intercept any write faults in the protected region.

VCPU Thread: In step (1), since RAMBlock registration with userfaultfd and fault-

handler thread setup occurs during the VM initialization phase, it has no impact on the

VM’s critical path.

In step (2), when a VCPU writes to a protected region, the polling thread receives

the UFFD EVENT PAGEFAULT event (Step (3)) with the UFFD PAGEFAULT WP flag set. In

Step (4), the VCPU thread enters a suspended state, awaiting a UFFDIO WAKE from the

fault handler to resume its operation. In step (5), the fault handler identifies the next

available offset within the backend file to copy the content of the page on which write

fault occurred. Simultaneously, it unmaps and remaps the trapped virtual address with

new backend file content using the mmap method with write permission to avoid future

traps. In step (6), the final action in this sequence involves waking up the suspended

VCPU thread through the UFFDIO WAKE ioctl parameter, allowing the VCPU thread to

continue its execution with the newly allocated page (Step (7)). In cases involving mul-

tiple templated VMs, each VM has its dedicated backend file to record delta changes.

This approach ensures that changes are tracked independently for each templated VM,

maintaining the integrity and isolation of their respective environments. Finally, in

step (8), before initiating the migration process, the polling thread joins with the main

QEMU thread.

48

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

10 20 30 40 50

M
e
m

o
ry

 U
sa

g
e
(M

B
)

Number of 1GB VMs

B (a)
B + Q + VM (b)

B + Q + VM + Q' (c)
B + Q + VM + Q' + VM' (d)

B + Q' + VM' (e)

(a) Intra-host TLM

Figure 4.4: Memory footprint of templated VMs at the source before migration and
destination after migration using Intra-host TLM

4.5.2 Transferring ownership of delta from Source VMs

Having tracked and mapped each delta page to the backend file, the next step is

to transfer ownership of these pages to the destination QEMU. Two critical pieces of

information are used for this process: identity the trapped pages and the corresponding

backend file offset for the ownership transfer.

Figure 4.3(b) shows that before initiating the migration command, the source QEMU

joins the polling thread and spawns the migration thread to transfer ownership of the

delta pages. In step (1), the migration thread unregisters the RAMBlocks from the user-

faultfd mechanism to prevent further write traps. In step (1), the destination QEMU is

also started in listening mode with access to the backend file memory template. In step

(2), once the migration is initiated, the VCPU at the source is suspended, and the down-

time is initiated as well. In step (3), the migration thread examines the dirty bitmap

49

 0

 50

 100

 150

 200

 250

 300

 350

 400

5 10 15 20 25

To
ta

l
M

ig
ra

ti
o
n
 T

im
e
 (

m
s)

Number of VMs booted from 1GB Template

Generic-TLM
Intrahost-TLM

(a) Intra-host TLM

Figure 4.5: Total migration time of multiple VMs started from the same template and
migrated concurrently using Intra-host TLM

of pages and transmits the backend file offset for those pages that are marked as dirty,

using the information collected during the preparation stage. In step (4), for each page,

the destination QEMU receives the offset, remaps the virtual address to the new location

in the backend file with write permission and, in step (5), reclaims ownership of those

delta pages. In step (6), once all the dirty pages’ offsets have been sent, the QEMU

source completes the migration. Finally, in step (7), the destination QEMU resumes the

VMs.

4.6 Evaluation

We evaluated the performance of intra-host TLM against Generic TLM. Our experi-

mental setup consists of three machines with two Intel Xeon E5-2620 v2 processors and

128GB DRAM. We implemented Generic TLM and Intra-host TLM versions of pre-

50

copy in the KVM/QEMU [38] virtualization platform on Linux. We modified QEMU’s

traditional pre-copy algorithms, with no changes to the guest operating system. Each

experiment was repeated at least five times to compute average values.

4.6.1 Reduced Memory Footprint

Figure 4.4 shows the memory footprint of templated VMs migrated using Intra-host

TLM. The X-axis shows the number of VMs started from the same template, and the

Y-axis shows their memory usage before migration at the source and after migration

at the destination using free command. The legend (a) represents the system memory

before executing any QEMU (Q) or VM. Legend (b) represents the system memory

usage after booting a VM using Q. Legend (c) represents the system memory usage

after initiating a new Q’ in listening mode. Legend (d) represents the system memory

usage after live migration, where Q, Q’, VM, and VM’ are all live. Finally, legend (e)

represents the system memory state after terminating Q and VM, leaving only Q’ and

VM’ live. For Generic TLM, we observed in Figure 4.1 legends (c)and (d) that the

more the number of VMs, the more collective delta generated by them resulting in a

significant increase in memory usage while they are migrated together. For Intra-host

TLM, we observe in Figure 4.4 legends (c) and (d), that this memory usage spike is

mostly eliminated by transferring the ownership of delta pages instead of copying them

over a TCP connection.

To further evaluate Intra-host TLM, we migrated five templated VMs that each runs

a write-intensive workload. The memory-write intensive application we used is a C

program that writes random numbers to a large region of main memory. The program

starts before the VM was migrated and continues writing to a large region of memory

during migration. The size of the working set (i.e., the size of the memory written) for

51

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

1 5 10 15 20

M
e
m

o
ry

 U
sa

g
e
(M

B
)

Working Set Size(MB)

B (a)
B + Q + VM (b)

B + Q + VM + Q' (c)
B + Q + VM + Q' + VM' (d)

B + Q' + VM' (e)

(a) Generic TLM

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

1 5 10 15 20

M
e
m

o
ry

 U
sa

g
e
(M

B
)

Working Set Size(MB)

B (a)
B + Q + VM (b)

B + Q + VM + Q' (c)
B + Q + VM + Q' + VM' (d)

B + Q' + VM' (e)

(b) Intra-host TLM

Figure 4.6: Memory footprint of templated VMs running write-intensive benchmarks
migration using (a) Generic TLM (b) Intra-host TLM.

52

 0

 50

 100

 150

 200

 250

 300

 350

 400

5 10 15 20 25

To
ta

l
M

ig
ra

ti
o
n
 T

im
e
 (

m
s)

Number of VMs booted from 1GB Template

Generic-TLM
Intrahost-TLM

Figure 4.7: Total Migration Time (TMT) of idle multiple templated VMs migrated
concurrently using Generic TLM and Intra-host TLM.

each of the 5 VMs ranges from 1MB to 20MB. As shown in Figure 4.6 (a), the memory

usage increases in legends (c) and (d) with an increase in the working set size due to

the copying of delta pages using Generic TLM. This effect is mitigated when using

Intra-host TLM, as illustrated in legends (c) and (d) in Figure 4.6 (b).

4.6.2 Improvement in Total Migration Time

Figure 4.7, 4.8 shows the total migration time of multiple idle and busy templated

VMs migrated using Generic TLM and Intra-host TLM. For Figure 4.7, the X-axis

indicates the number of idle VMs booted from the same template and for Figure 4.8,

the X-axis indicates the size of the dirtying memory block for each of the five templated

VMs booted from the same template. The Y-axis shows the total migration time in

milliseconds. As shown in Figure 4.7, for Generic TLM, there is an increase in total

migration time with an increase in the number of templated VMs. The more the number

of VMs the more delta generated by them causing the copying overhead contributing

53

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

1 5 10 15 20

To
ta

l
M

ig
ra

ti
o
n
 T

im
e
 (

m
s)

Working Set Size (MB)

Generic-TLM
Intrahost-TLM

Figure 4.8: Total Migration Time (TMT) of multiple templated VMs running write-
intensive workload of varying size in MB migrated concurrently using Generic TLM
and Intra-host TLM.

 0

 10

 20

 30

 40

 50

5 10 15 20 25

D
o
w

n
ti

m
e
 (

m
s)

Number of VMs booted from 1GB Template

Generic-TLM
Intrahost-TLM

Figure 4.9: DownTime (DT) of multiple idle templated VMs migrated concurrently
using Generic TLM and Intra-host TLM.

54

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

1 5 10 15 20

D
o
w
n
ti
m
e
(m
s
)

Number of 1GB VMs

TLM
Intrahost-TLM

Figure 4.10: DownTime (DT) of multiple templated VMs running write-intensive
workload migrated concurrently using Generic TLM and Intra-host TLM.

to the higher total migration time for Generic TLM. Our Intra-host TLM significantly

reduced page copying by transferring ownership, resulting in an up to 85% reduction

in total migration time. The total migration time remains consistent for all templated

VMs regardless of their count until it reaches 11; after that, there is a slight increase

in migration time due to CPU contention. For busy VMs, as shown in figure 4.8, both

Generic and Intra-host TLM exhibit an increase in total migration time with an increase

in the dirty rate size. However, the latter shows a significantly lower migration time due

to the elimination of copy overhead.

4.6.3 Reduction in Pages Transferred

Figure 4.12 and 4.13 illustrates the total pages transferred of multiple idle and busy

templated VMs migrated using Generic TLM and Intra-host TLM. For idle VMs as

shown in Figure 4.12, both Generic and Intra-host TLM exhibit a slight increase in the

total pages transferred with an increase in the number of templated VMs. In the case

55

 1

 10

 100

 1000

 10000

 100000

 1x106

5 10 15 20 25

To
ta

l
4

K
B

 P
a
g

e
s

Tr
a
n

sf
e
rr

e
d

Working Set Size (MB)

Generic-TLM
Intrahost-TLM

Figure 4.11: Total 4KB pages transferred of multiple templated VMs running write-
intensive workload of varying size.

 10

 100

 1000

 10000

 100000

5 10 15 20 25

To
ta

l
4

K
B

 P
a
g

e
s

Tr
a
n

sf
e
rr

e
d

Number of VMs booted from 1GB Template

Generic-TLM
Intrahost-TLM

Figure 4.12: Idle Templated VMs

56

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 0 2 4 6 8 10 12 14 16 18 20

To
ta

l
4

K
B

 P
a
g

e
s

Tr
a
n
sf

e
rr

e
d

Working Set Size (MB)

Generic-TLM

 0

 500

 1000

 1500

 2000

 2500

 0 2 4 6 8 10 12 14 16 18 20

To
ta

l
4

K
B

 P
a
g

e
s

Tr
a
n
sf

e
rr

e
d

Working Set Size (MB)

Intrahost-TLM

Figure 4.13: Busy Templated VMs

of Generic TLM, this increase is attributed to the duplication of delta pages within the

same host. However, despite Intra-host TLM eliminating the unnecessary copying of

pages, there is still some metadata information, such as block address, block name, page

offsets, mmap offsets, and others, that needs to be transferred, thereby increasing the

transferred pages. Four special pages from each of the different RAMBlocks cannot be

write-protected; therefore, they also need to be copied along with the metadata. Figure

4.13 shows that with an increase in the working set size, the total pages transferred

increases for both Generic and Intra-host TLM. For the Intra-host TLM, along with

the four special pages and meta-data, the offset of the working set size needed to be

transferred as well to the destination to reclaim the ownership of those pages.

4.6.4 Effect on Downtime

Figure 4.9, 4.10 shows the downtime of multiple idle and busy Templated VMs

migrated using Generic and Intra-host TLM. Though there is unpredictability in the

57

downtime of Generic TLM [17], a more stable value can be obtained using a lower

threshold value, we have set the threshold value as 2MB to trigger the downtime. For

both idle and busy templated VMs, Generic TLM experiences minimal downtime due

to the transfer of only a small number of delta pages and essential system state infor-

mation such as I/O, VCPU, and device states. Conversely, in the case of idle VMs,

Intra-host TLM exhibits a consistent downtime of approximately 22ms, regardless of

the number of templated VMs. However, for busy VMs, the downtime increases pro-

portionally with the rising memory dirty rate as this necessitates more pages requiring

ownership changes, thus resulting in the transfer of additional offsets. This is likely due

to an inefficient implementation of our offset transfer mechanism, which needs to be

addressed in future work.

4.7 Related Work

Mwarp [73] addresses the issue of intra-host migration without copying pages by

transferring ownership. However, this solution is container-specific and cannot be ap-

plied to VMs. Several live patching works related to hypervisors [86, 13, 3] focus on

replacing old unstable hypervisors with new stable versions without disrupting virtual

machines. If the patching only needs to be applied to QEMU and not KVM, then our

Intra-host TLM offers a more flexible way to perform live migration within the same

host for templated VMs without disrupting the entire host.

4.8 Chapter Summary

In this chapter, we addressed the problem that Generic TLM is inefficient for migrat-

ing templated VMs within the same host. We proposed Intra-host TLM that transfers the

58

ownership of delta pages without copying them when migration is performed within the

same host. We designed, implemented, and evaluated Intra-host TLM on QEMU/KVM

platform and showed that our technique not only avoid unnecessary copying of delta

pages but also significantly reduce the migration time by upto 85% compared to Generic

TLM.

59

5 Sharing-aware Live Migration

In this chapter, we continue our focus on the intersection of two essential techniques

for managing co-located VMs: live migration and copy-on-write (COW) page sharing.

As mentioned earlier, live migration [8, 28, 26] is a key technology in data centers

that transfers running VMs from one physical machine to another. It is widely used

for a variety of purposes, such as load balancing [4, 30, 70], meeting service level

agreements [56], energy savings [77], and seamless maintenance of physical servers.

As in Chapter 3, we reconsider the problem that co-located VMs may often need to be

migrated to the same destination machine for various reasons.

5.1 Problem Statement

As mentioned in Section 1.1, COW page sharing reduces the collective memory

footprint by sharing identical pages among co-located VMs, whenever doing so is feasi-

ble and safe. In Chapter 3, we presented the TLM technique, which performs maintains

sharing of pages with the base template image when template instances are migrated

together to another destination machine. However TLM does not handle shared pages

besides those due to templating. For instance, deduplication mechanisms, such as KSM

can share pages among unrelated co-located VMs that do not necessarily share a tem-

plate base image. Hence there is a need for a more inclusive technique for sharing-aware

live migration that can handle all types of page sharing, irrespective of the underlying

60

sharing mechanism.

5.2 Contributions

In this chapter, we address the general problem of preserving all pre-existing page

sharings among multiple co-located VMs as they are live migrated together to a com-

mon destination machine. Our goal is to prevent the expansion of VMs’ memory foot-

print at the destination for both pre-copy and post-copy live migration, for all types of

VMs, irrespective of the underlying page sharing mechanisms. The contributions of

this work are as follows:

1. We identify and demonstrate the problem of memory footprint expansion caused

by traditional live migration techniques, specifically both pre-copy [8] and post-

copy [28]. This expansion occurs because these techniques lack awareness of

pre-existing COW page sharing among co-located VMs, both within and across

VMs.

2. We then present a more general Sharing-aware Live Mirgation (SLM), which

identifies and preserves all types of pre-existing page during live migration and

works with any existing memory sharing techniques such as KSM, VM templat-

ing, or others.

3. We implement and evaluate SLM for both pre-copy and post-copy migration in

the KVM/QEMU [38] virtualization platform using several workloads and mi-

crobenchmarks. Besides preserving all pre-existing page sharings at the destina-

tion machine, SLM reduces the total migration time by up to 59% and network

traffic by up to 62%.

61

While not the focus of this chapter, we note that side-channels [27, 44, 9, 83] might ex-

ploit memory sharing among mutually untrusting VMs and solutions exist to mitigate

these risks [58, 39]. This chapter assumes that appropriate mitigation strategies are de-

ployed when page sharing is used, such as by sharing pages only among mutually trust-

ing VMs [58]. Further, memory being a bottleneck resource, safe page sharing among

mutually trusting VMs is important to retain consolidation and multiplexing benefits

of virtualization. Finally, while we use the KVM/QEMU platform to demonstrate our

techniques in this chapter, the core conceptual ideas of our solution are applicable to

other hypervisors as well.

In the rest of this chapter, we demonstrate the problem of memory footprint ex-

pansion during live migration for pre-copy and post-copy. Next we present the design

and implementation SLM followed by its evaluation. The chapter concludes with a

discussion of related work and summary of contributions.

5.3 Problem Demonstration

To experimentally demonstrate this problem, we measured the memory footprint of

multiple concurrent 1GB VMs at both the source and destination machines after migrat-

ing the VMs using traditional pre-copy and post-copy techniques. KSM is used at the

source machine to deduplicate the memory of co-located VMs before migration begins,

thus establishing preexisting COW-shared pages across VMs. The actual memory us-

age of each VM in this experiment is smaller than their maximum 1GB permitted since

the VMs are not yet using their full allocation. Figure 5.1 shows that both pre-copy

and post-copy, which are unaware of existing COW-shared pages among VMs, result

in a larger memory footprint at the destination than at the source after live migration

62

 0

 500

 1000

 1500

 2000

 2500

 3000

1 2 4 6 8

M
e
m

o
ry

 U
sa

g
e
(M

B
)

Number of 1GB VMs

Source(Pre-copy)
Destination(Pre-copy)

Source(Post-copy)
Destination(Post-copy)

Figure 5.1: Memory footprint of VMs expands at destination after both pre-copy and
post-copy live migration, because pages shared among VMs at the source are replicated
for each VM at the destination.

completes.

While one can deduplicate again (say, using KSM) at the destination machine to

reestablish page sharing and reduce the overall memory usage, this can take several min-

utes to converge depending on how aggressively KSM is configured to scan pages [66].

There is also a more severe possibility that, when migrating multiple VMs to the same

destination, some VM migrations might fail due to a temporary lack of memory at the

destination. However, sufficient memory exists if pre-existing page sharings from the

source were faithfully reproduced at the destination during migration. Even if the des-

tination has enough memory and the migration succeeds, it will cause higher memory

pressure at the destination, more network traffic, and longer total migration time.

63

Receive the page

Receive the Frame#

unique
page?

Mark the page with COW protection

duplicate
page?

dirty
page?

Retrive the mmap offset associated with the Frame#

Mmap to backend-file
with the offset

Yes

Yes

No

No

Yes

Send the Frame#

Unique Page

Duplicate
Page

Dirty
Page

For each page
Find Page# and Frame#

Is Page#
present?

Yes

YesIs Frame#
present?

No

No

Send the Page

1)) Send the Frame #
2)) Send the PaJe

D) 6RXUFe 6LGe E) 'eVWLQDWLRQ 6LGe

Shared
Page shared

page?

Figure 5.2: SLM Algorithm

5.4 SLM Design

We now present the design of a more general SLM technique, which preserves all

pre-existing COW page sharings among co-located VMs being migrated concurrently.

SLM is designed to operate effectively with both pre-copy and post-copy algorithms.

The key insight behind SLM is that irrespective of the underlying page-sharing mech-

anism (such as KSM, VM templating, or others), multiple COW-mapped guest pages

will map to the same physical page [74]. As shown in Figure 5.2 SLM examines the

physical address of each guest page being transferred, identifies COW-mapped shared

pages at the source node, and avoids transmitting them multiple times to the destination.

Instead, such shared pages at the source node before migration are COW mapped to the

same physical page at the destination node.

The traditional pre-copy migration transfers the memory pages of a VM over sev-

eral rounds, where the initial round transfers the entire memory of the VM, while the

subsequent rounds only transfer pages that the VM has dirtied (i.e., written to) in the

64

Algorithm 1 SLM: Source
Input:

• N is the total number of pages in a VM.

• page[N] is the array of all pages.

• vpn list[N] is the array of Virtual Page Numbers (VPN).

• p f n list[N] is the array of Page Frame Numbers (PFN).

1: function MIGRATE(VM) ▷ Source
2: for i← 1 to N do
3: Find VPN and PFN of page[i]
4: if vpn not in vpn list then
5: Append vpn to vpn list
6: if p f n not present in p f n list then
7: Append p f n to p f n list ▷ Unique page
8: Send p f n of page[i]
9: Send page[i]

10: else ▷ Shared page
11: Send p f n of page[i]
12: end if
13: else ▷ Dirty page
14: Send page[i]
15: end if
16: end for
17: end function

previous rounds. This dirtying operation during live migration may break pre-existing

COW mappings at the source. SLM for pre-copy is designed to detect when such COW

mappings break at the source across multiple pre-copy rounds and to disassociate the

corresponding COW-mapped pages at the destination. On the other hand, post-copy

migration transfers each page only once and, since the VM executes at the destination,

there are no dirtied pages at the source to retransmit.

As shown in Algorithm 1 and 2 Figure 5.3, SLM operates on both the source and the

destination nodes. At the source node, SLM classifies the type of each page (Unique,

Shared, or Dirty) and transfers them to the destination according to their type. At the

destination, SLM receives each page’s information and maps it accordingly into the

65

Algorithm 2 SLM: Destination
Input:

• N is the total number of pages in a VM.

• page[N] is the array of all pages.

• identical[N] is the array of identifiers for pages.

• o f f set list[N] is the array of mmap offsets from a memory-backend-file.

1: function RECEIVE(VM) ▷ Destination
2: for i← 1 to N do
3: mmap o f f set← 0
4: Receive identifier for page[i]
5: if identical[i] = 0 then ▷ Unique page
6: Append mmap o f f set to o f f set list
7: Mmap page[i] with mmap o f f set
8: Receive page[i] from the network
9: Increment mmap o f f set

10: COW-protect page[i]
11: else if identical[i] = 1 then ▷ Shared page
12: Retrieve mmap o f f set from o f f set list
13: Mmap page[i] with mmap o f f set
14: COW-protect page[i]
15: else ▷ Dirty page
16: Receive page[i] from the network
17: end if
18: end for
19: end function

VMs’ memory. We describe these steps at the source and destination in more detail

below.

5.4.1 Identifying Page Type at Source

As illustrated in Algorithm 1 and Figure 5.3, SLM follows a two-step process for

each page transfer. In the first step, SLM determines the page’s physical frame number

(PFN) and the virtual page number (VPN). This information is stored in a hash table for

efficient lookup during subsequent transfers. In the second step, SLM categorizes pages

into one of the three types, as outlined in Table 5.1, based on the presence or absence

of the PFN and VPN in the hash table.

66

VM_nVM_2VM_1

Source

VM_nVM_2VM_1

Destination

Unique Duplicate Dirty

RAM

Frame# Physical Page Virtual Page

RAMKSM

Shared

Figure 5.3: SLM classifies pages of VMs at the source as Unique, Shared, and Dirty.
Shared pages are not re-transmitted; instead Destination COW-maps them into a com-
mon in-memory backend file.

PFN VPN Page Type
✗ ✗ Unique
✓ ✗ Shared

✓/✗ ✓ Dirty

Table 5.1: Determining page type using PFN and VPN

67

1. Unique Page: Pages that have not been transferred yet are considered Unique. In

this scenario, the corresponding PFN and VPN are not present in the hash table.

Thus, both the PFN and VPN are inserted into the hash table before sending the

page content.

2. Shared Page: Pages that have already been transferred are considered Shared. In

this case, the PFN is present in the hash table, but the VPN is not. Therefore, only

the VPN is inserted into the hash table before sending the PFN.

3. Dirty Page: Pages that require retransmission due to being dirty in the previous

pre-copy round are referred to as Dirty pages. The PFN may or may not be

present in the hash table, but the VPN is present. In this case, only the PFN is

inserted into the hash table before sending the page content. Since post-copy only

transfers pages once, this type of page doesn’t exist for SLM post-copy.

For Unique and Dirty pages, SLM transfers the entire page, including the page type

and its PFN at the source, as a unique identifier. However, for Shared pages, SLM does

not send the page content but only the page type and the PFN.

5.4.2 Preserving COW Sharing at Destination

SLM at the destination node works as shown in Algorithm 2. At its core, the al-

gorithm operates in two ways depending on whether a full page or only a source PFN

is received from the source node. If a full page is received, it is copied into the corre-

sponding VM’s memory, and the source PFN is recorded for future reference. On the

other hand, if only the source PFN is received, the corresponding virtual page in the

VM is mapped to the previously received physical page with the same source PFN.

68

To facilitate COW sharing at the destination, we set up an in-memory backend-file

into which each received page is memory mapped using the mmap system call [46].

There are two flags of importance, MAP SHARED and MAP PRIVATE. The MAP SHARED

flag causes any writes to a mapped virtual address to be written back to the backend-

file. On the other hand, MAP PRIVATE results in COW mapping, meaning that any

writes to the mapped virtual address result in the allocation of a new private page to the

process before the write is committed, ensuring that the write is not transmitted to the

backend-file.

For SLM pre-copy, when a Unique page is received, the entire backend-file is ini-

tially configured with the MAP SHARED flag. The received page is then written to the

backend-file, and the mmap configuration for that page is changed to MAP PRIVATE to

enable COW mapping for any future transmissions of the same Shared page. The re-

ceived PFN and its corresponding mmap offset are also recorded in a hashtable. When

a Shared page is received, SLM retrieves the corresponding mmap offset from the

hashtable using the received PFN and maps the virtual address to the backend-file using

the MAP PRIVATE flag. If a Dirty page is received, SLM skips any mmap operations and

copies the entire page content directly from the network into the VM’s address space.

In SLM post-copy, the migration thread is tasked with copying page content from

the network socket, whether received through active-pushing or demand-paging. This

algorithm operates in three stages: (1) For a Unique page type, the migration thread

directly copies the temporary page to the backend-file and records the received PFN and

its corresponding mmap offset in the hash table. For Shared page types, the migration

thread retrieves the mmap offset from the hash table using the received PFN. (2) The

migration thread maps the virtual address to the backend-file using the mmap system call

69

and configures the page as MAP PRIVATE. (3) Finally, if a VCPU accessing this page was

suspended due to a page fault, the migration thread wakes it up. At the destination, if the

VMs introduce any new duplicated pages in the future, KSM continues to deduplicate

them.

5.5 Implementation

5.5.1 Retrieval and Tracking of PFN

All virtual pages mapped to a shared physical page must have the same PFN, irre-

spective of which sharing mechanism generates such mapping. QEMU is a user-level

management process whose address space has specific regions reserved for guest mem-

ory [38]. To get the guest’s physical address of a page (VPN), we could directly access

the addresses that are part of the reserved region.

The Linux kernel exposes page table information to userspace using /proc/pid/pagemap

[76]. With this file, a userspace process can find the PFN for a specific VPN. Each entry

in the pagemap contains 64-bit information indexed by the VPN, with the first 56 bits

indicating the PFN. SLM takes advantage of the pagemap in the pseudo file system to

retrieve accurate PFNs for each VPN, enabling the determination of the page type. SLM

uses hashtable at the source for page type and at destination for PFN→ mmap o f f set

mappings. A new mmap offset entry is inserted into the table using PFN as a key every

time a Unique page arrives since they are guaranteed to have new page content. When-

ever a Shared page arrives, SLM looks up the hashtable to retrieve the corresponding

mmap offset using its PFN as the key and maps the VPN to the respective mmap offset

with COW protection. Finally, SLM skips the lookup during the arrival of Dirty pages.

70

5.5.2 In-Memory Backend File

The destination node prepares an in-memory backend file into which the content

of each Unique page is memory mapped. Subsequent Shared pages are mapped COW

from this backend file. The backend file is stored in the main memory using the tmpfs

file system to avoid the latency of accessing the virtual disk. Sometimes the OS uses

lazy allocation when creating a backend file of large size. Doing so can result in bus er-

rors when unallocated file regions are memory mapped to the virtual address for unique

pages. We eliminated the problem by writing zeros into the backend file before map-

ping the area for storing unique page contents. By default, each VM has a limit on the

number of mmap regions of the file that it can access; we increase the limit by adjusting

the vm.max map count configuration parameter in /etc/sysctl.conf. In our proto-

type, the size of each mmap region in the backend file is the same as the page size of

4KB.

5.5.3 Synchronization Across Multiple VMs

One synchronization challenge we encountered relates to the order of arrival of

Unique and Shared page information. In an ideal scenario, for a given PFN, a Unique

page (comprising both its page content and PFN) should arrive at the destination before

any Shared page (containing only the PFN). But, during the migration of multiple VMs,

there are instances where the PFN for a Shared page arrives for a VM (e.g., VMx) before

the Unique page content for the corresponding PFN arrives for another VM (e.g., VMy).

However, the Shared page cannot be COW-mapped until the Unique page is mapped and

its content is written into the backend-file.

For SLM post-copy, when a Shared page information arrives before its Unique page,

71

QEMU for VMx busy waits, anticipating the arrival of the Unique page with the expec-

tation that the waiting time will be short. When the Unique page with page content for

VMy arrives, QEMU for VMx proceeds to COW map the Shared page.

For SLM pre-copy, VMy’s page content may change in subsequent pre-copy rounds.

We update all pending Shared pages in VMx that depend on VMy at the end of each

pre-copy round through busy waiting to prevent stale mapping entries. Busy waiting

at the end of the last pre-copy round, just before downtime, can extend VM downtime.

To mitigate this latency, SLM includes an additional live pre-copy round without busy

waiting before the downtime phase. This issue doesn’t arise with SLM post-copy since

pages are sent only once in post-copy.

5.6 Evaluation

We now evaluate the performance of SLM against traditional pre-copy and post-

copy live migration methods. Our experimental setup consists of three machines, each

equipped with two Intel Xeon E5-2620 v2 processors and 128GB of DRAM, running

Ubuntu. We implemented SLM versions of pre-copy and post-copy in the KVM/QEMU [38]

virtualization platform on Linux. We modified QEMU’s default pre-copy and post-copy

algorithms with no changes to the guest operating system in the VMs. We used VMs of

varying sizes, ranging from 1GB to 32GB, as needed. Each experiment was repeated at

least five times to calculate average values.

We demonstrate that migration of VMs using SLM reduces the total migration time

and network traffic, besides maintaining memory footprint at the destination and appli-

cation performance during migration.

Throughout the evaluation, we use the term generic to refer to the traditional ver-

72

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

1 4 8 16 24 32

M
e
m

o
ry

 U
sa

g
e
(M

B
)

Varying VM Size(GB)

Source(Generic-Precopy)
Destination(Generic-Precopy)

Source(SLM-Precopy)
Destination(SLM-Precopy)

Figure 5.4: Memory footprint of virtual machine of varying size migrated using
Generic and SLM pre-copy and post-copy.

sions of pre-copy and post-copy. In our experiments with KSM, we initiate live mi-

gration only after allowing the KSM daemon [16] to run for a sufficient period of time,

ensuring that total memory usage has stabilized. This stabilization is confirmed by mon-

itoring the output of the free command in the host system. Doing this ensures that our

results capture all COW-shared pages among VMs.

5.6.1 Live Migration of Single VM

Figures 5.4and 5.5 depict the memory usage of a single VM of varying sizes dur-

ing migration using the Generic, SLM pre-copy and post-copy methods. Our analysis

reveals that as the VM size increases, SLM approach effectively preserves the memory

footprint at the destination, mirroring that of the source. Additionally, our experiment

demonstrates that there is minimal sharing of pages in the case of a single VM. SLM

provides more improvements when handling multiple VMs.

Figure 5.6 illustrates the total migration time for single VMs of varying sizes, uti-

73

 0

 200

 400

 600

 800

 1000

 1200

 1400

1 4 8 16 24 32

To
ta

l
M

e
m

o
ry

 U
sa

g
e
(M

B
)

Varying VM Size(GB)

Source(Generic-Postcopy)
Destination(Generic-Postcopy)

Source(SLM-Postcopy)
Destination(SLM-Postcopy)

Figure 5.5: Memory footprint of virtual machine of varying size migrated using
Generic and SLM post-copy.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

1 4 8 16 32

To
ta

l
M

ig
ra

ti
o
n
 T

im
e
(m

s)

Varying VM Size(GB)

Generic-Precopy
SLM-Precopy

Generic-Postcopy
SLM-Postcopy

Figure 5.6: Total migration time of single VM of varying size migrated using generic,
SLM pre-copy and post-copy.

74

 0

 50000

 100000

 150000

 200000

 250000

 300000

1 4 8 16 32

To
ta

l
Pa

g
e
s

Tr
a
n

sf
e
rr

e
d

Varying VM Size(GB)

Generic-Precopy
SLM-Precopy

Generic-Postcopy
SLM-Postcopy

Figure 5.7: Total pages transferred of single VM migrated using generic, SLM pre-
copy and post-copy

lizing both the Generic, SLM pre-copy and post-copy methods. Our experiments reveal

that as VM size increases, the migration time for single VMs also increases. How-

ever, SLM pre-copy and post-copy effectively preserved shared pages, resulting in a

reduction in migration time.

Figure 5.7 presents data on the total pages transferred for single VMs of various

sizes when employing both the Generic, SLM pre-copy and post-copy methods. The

page size was consistently set to 4KB, and the hugepages configuration was disabled

throughout all experiments. Our analysis reveals that while the total pages transferred

increase with VM size, our SLM technique skips the transmission of shared pages,

resulting in a relatively lower volume of pages transferred compared to the Generic

method.

75

 0

 500

 1000

 1500

 2000

 2500

 3000

1 2 4 6 8

M
e
m

o
ry

 U
sa

g
e
(M

B
)

Number of 1GB VMs

Generic-Src
Generic-Des

SLM-Src
SLM-Des

(a) Pre-copy

 0

 500

 1000

 1500

 2000

 2500

 3000

1 2 4 6 8

M
e
m

o
ry

 U
sa

g
e
(M

B
)

Number of 1GB VMs

Generic-Src
Generic-Des

SLM-Src
SLM-Des

(b) Post-copy

Figure 5.8: Comparison of memory footprint at source vs. destination when multiple
VMs are migrated concurrently using generic vs. SLM (a) pre-copy and (b) post-copy.
We observe a significant increase in memory footprint for generic pre-copy and generic
post-copy vs. no significant increase for SLM pre-copy and SLM post-copy.

76

5.6.2 Memory Footprint of VMs After Migration

Figures 5.8(a) and (b) compare the memory footprint at source vs. destination when

multiple VMs are migrated concurrently using generic vs. SLM techniques for pre-copy

and post-copy. The X-axis indicates the number of concurrent 1GB VMs, and the Y-axis

displays their collective memory footprint. Generic live migration, despite reducing

memory usage at the source through KSM, leads to a significantly expanded memory

footprint at the destination because the live migration mechanism is unaware of COW-

shared pages among VMs at the source. In contrast, SLM preserves any pre-existing

COW page mappings at the destination for both pre-copy and post-copy, resulting in

no significant memory expansion at the destination. For SLM, slight differences in

memory footprint between source and destination are due to differences in memory

usage of the QEMU process associated with VM.

5.6.3 TMT, Downtime, and Network Traffic Reduction

In this section, we evaluate the performance of concurrently migrating multiple idle

VMs between two hosts in terms of TMT, downtime, and network traffic reduction. We

increase the number of VMs keeping the memory size of each VM constant at 1GB.

TMT is compared between generic and SLM versions of pre-copy and post-copy

in Figure 5.9. The X-axis is the number of concurrent 1GB VMs being migrated, and

the Y-axis shows the TMT in milliseconds. The results show up to 59% and 57%

reduction in TMT for SLM pre-copy and post-copy, respectively, compared to their

generic coureduction in is due to SLM eliminating the retransmission ofnterparts. This

reduction in is due to SLM eliminating the retransmission of COW-shared pages from

source to destination. Figure 5.10 compares the total number of pages transferred during

77

 0

 5000

 10000

 15000

 20000

 25000

 30000

1 2 4 6 8

To
ta

l
M

ig
ra

ti
o
n
 T

im
e
(m

s)

Number of 1GB VMs

Generic-Precopy
SLM-Precopy

Generic-Postcopy
SLM-Postcopy

Figure 5.9: Total migration time of multiple VMs concurrently migrated using generic
and SLM pre-copy and post-copy.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

1 2 4 6 8

To
ta

l
Pa

g
e
s

Tr
a
n

sf
e
rr

e
d

Number of 1GB VMs

Generic-Precopy
SLM-Precopy

Generic-Postcopy
SLM-Postcopy

Figure 5.10: Pages transferred during concurrent migration of multiple VMs using
generic and SLM pre-copy and post-copy.

78

generic and SLM pre-copy and post-copy. The experiments show a reduction of up to

60% and 62% in total pages transferred for SLM pre-copy and post-copy, respectively.

We compare downtime of 8 idle 1GB VMs during their concurrent migration using

generic and SLM versions of pre-copy and post-copy. The maximum number of pages

transferred during downtime is capped at 512 (2MB). The results indicate that VMs

experience a comparable average downtime of around 93ms for generic pre-copy and

96ms for SLM pre-copy. Generic and SLM post-copy transfer minimal processor states

and non-pageable memory, causing downtime of around 290ms and 300ms respectively.

The higher downtime of post-copy for both generic and SLM versions may be attributed

to various factors including VCPU thread invocation and demand-paging, leading to

more remote page faults at resumption time. Application-observed downtimes for non-

idle VMs (discussed later) tend to be higher than these numbers for idle VMs because

of network state recovery.

5.6.4 Network Bandwidth Using iPerf

VM migration is a network-intensive procedure that can lead to network contention

between the migration process and the applications running inside the VM. To measure

the available bandwidth for the VM’s applications during migration, we use iPerf [33], a

network-intensive application benchmark. An iPerf server is set up on a third machine

(i.e., neither the source nor the destination) within the same network, while the iPerf

client is run inside the VM being migrated. The client then sends data to the server

during migration through a TCP connection. All these machines are connected using a

Gigabit Ethernet switch and the link is shared between the host and VM.

Figures 5.11 and 5.12 show network bandwidth measurements during live migra-

tion using pre-copy and post-copy techniques. At the beginning of the migration, both

79

 400

 500

 600

 700

 800

 900

 1000

 0 5 10 15 20 25

B
a
n
d

w
id

th
(M

b
p

s)

Time(sec)

Generic-Precopy
SLM-Precopy

Figure 5.11: iPerf bandwidth for generic and SLM pre-copy.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 5 10 15 20 25

B
a
n
d

w
id

th
(M

b
p

s)

Time(sec)

Generic-Postcopy
SLM-Postcopy

Figure 5.12: iPerf bandwidth for generic and SLM post-copy.

80

pre-copy techniques experienced a drop in network bandwidth from 940 Mbps to ap-

proximately 650 Mbps. However, the decline was more significant for both post-copy

versions when the bandwidth dropped close to zero due to downtime. The sudden drop

to 670 Mbps in both pre-copy versions is attributed to network contention between the

migration thread and the iPerf client running inside the VM. Meanwhile, the fluctua-

tions are a result of QEMU’s optimization for zero pages, where only 8 bytes are sent

to indicate a zero page instead of the entire page, freeing up bandwidth for iPerf traf-

fic. In contrast, in both versions of post-copy, the fluctuations are due to page faults

caused by the post-copy thread resulting in the retrieval of pages from the source via

demand-paging and active-pushing of pages from the source to avoid network faults.

SLM pre-copy migration was completed in 14.8s, whereas generic took a longer

time, approximately 19.1s. This reduction in TMT for SLM pre-copy is due to a re-

duced number of pages that needed to be transferred, a consequence of eliminating

redundant transfers of COW-shared pages. However, the active-pushing nature of both

generic and SLM post-copy techniques, in tandem with demand-paging, aided in the

faster recovery of network bandwidth for both post-copy methods. SLM post-copy re-

quired approximately 2s, whereas generic took around 3.5s to complete their migration

process. They reached full bandwidth faster without significant fluctuations when com-

pared to their pre-copy counterparts. While SLM pre-copy experienced a downtime of

approximately 182ms, generic pre-copy exhibited a comparatively lower downtime of

around 106ms. This overhead is due to the busy waiting synchronization, as detailed in

section III.D. Although both SLM and generic versions of post-copy exhibit a similar

downtime of around 500ms due to network state recovery, this duration becomes sig-

nificant when compared to their pre-copy counterparts. Our SLM technique for both

81

 0

 4

 8

 12

 16

 0 50 100 150 200 250 300 350 400

R
p

S
(*

1
0

4
)

Time(Sec)

Generic-Precopy

 0

 4

 8

 12

 16

 0 50 100 150 200 250 300 350 400

R
p

S
(*

1
0

4
)

Time(Sec)

SLM-Precopy

Figure 5.13: Redis-cluster read throughput when migrating 3 VMs using generic and
SLM versions of pre-copy.

pre-copy and post-copy doesn’t introduce any significant overhead in terms of appli-

cation performance; in fact, it reduces TMT by eliminating the redundant transfer of

shared pages.

5.6.5 Redis Cluster Benchmark

Redis is a real-world in-memory key–value database. Redis cluster is a way to run a

Redis server by evenly distributing data across multiple nodes. We set up all three Redis

cluster nodes as one Redis cluster server. Each VM is configured with 4GB RAM shar-

ing a gigabit link and running a Redis cluster node instance. The Redis cluster server

contains 5 million random key-value data entries, which are evenly distributed across

all three nodes. We use Redis-Benchmark [67] to emulate 50 clients sending a GET

command that randomly reads key-value data from the target Redis cluster server. Our

experiments used a Redis pipeline of 16, allowing clients to send concurrent requests

without waiting for server responses [49].

82

 0

 4

 8

 12

 16

 0 50 100 150 200 250 300

R
p

S
(*

1
0

4
)

Time(Sec)

Generic-Postcopy

 0

 4

 8

 12

 16

 0 50 100 150 200 250 300

R
p

S
(*

1
0

4
)

Time(Sec)

SLM-Postcopy

Figure 5.14: Redis-cluster read throughput when migrating 3 VMs using generic and
SLM versions of post-copy.

To ensure a fair comparison, we synchronized the start time of migration for Fig-

ures 5.13 and 5.14. Initially, Redis demonstrated comparable throughput with both

pre-copy and post-copy migration. However, during pre-copy migration, Redis experi-

enced a 40% reduction in throughput due to network contention with migration traffic.

Conversely, Redis’ throughput during post-copy migration dropped to zero and consis-

tently remained lower than pre-copy, primarily due to downtime and remote page faults

which resulted in fetching pages across the network. During the downtime, with pre-

copy, there were three brief drops in throughput towards the end of migration whereas.

With post-copy, Redis experienced a significant downtime causing a complete discon-

nection.

In SLM versions of both pre-copy and post-copy, the advantages of COW page

sharing are preserved during migration, resulting in a reduced TMT compared to their

generic counterparts. SLM pre-copy took approximately 77s to complete migration,

83

whereas generic pre-copy required 87s with almost the same application-level down-

time of around 5s. Due to multiple remote page faults, SLM post-copy took 58s to com-

plete migration, while generic post-copy took about 65s. While post-copy had shorter

TMT, the additional pages required by demand paging and active-push mechanisms

took significantly longer to fetch, leading to a 30-second application-level downtime

before full throughput was restored.

5.6.6 LAMP/ApacheBench Response Time

We created three VMs with a web server environment to represent a typical cloud

host migration. Each VM was equipped with the Linux-Apache-MySQL-PHP (LAMP)

software stack [41], which is a commonly used open-source software stack for web

servers. These components work together to offer a platform for creating and hosting

dynamic websites and web applications. On top of this software stack in each VM,

we installed a WordPress website. To evaluate the web server’s performance, we used

ApacheBench [75], a benchmark tool for Apache servers. ApacheBench emulates mul-

tiple clients that continuously request the website and reports performance metrics such

as the number of requests per second handled and the response time of each request.

Three ApacheBench instances run on a separate machine in the same network,

each emulating five clients to request one of the three web servers. ApacheBench is a

resource-intensive benchmark that stresses CPU, memory, disk I/O, and network. In our

testing environment, CPU utilization is consistently above 95% while memory and I/O

accesses are heavy enough to trigger the downtime phase. On average, ApacheBench

indicates a rate of 20-23 responses per second across VMs, except for the downtime

phase. During this phase, the response time increases proportionally to the duration

required for the destination-side VM to resume

84

0

500

1000

1500

2000

2500

3000

3500

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

Re
sp

on
se

 ti
m

e
pe

r R
eq

ue
st

 (m
s)

Number of Request

G1 G2 G3 SLM1 SLM2 SLM3

Migration Start SLM End
Generic
End

Figure 5.15: ApacheBench response times for generic and SLM pre-copy

0

2000

4000

6000

8000

10000

12000

14000

16000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Re
sp

on
se

 ti
m

e
pe

r R
eq

ue
st

 (m
s)

Number of Request

G1 G2 G3 SLM1 SLM2 SLM3

Migration
Start Generic EndSLM End

Figure 5.16: ApacheBench response times for generic and SLM post-copy

85

Figure 5.15 and Figure 5.16 show the response time of each web server VM during

migration using different migration strategies. We aligned the time when the migration

started. The solid and dashed lines represent VMs migrated using SLM and generic.

Regarding the pre-copy strategy, both generic and SLM approaches exhibit three dis-

tinct spikes in the plot, each signifying one of the VMs entering the downtime phase,

causing temporary degradation in web server performance. However, SLM pre-copy

can reach the downtime threshold earlier than generic pre-copy due to the reduced num-

ber of pages transferred. SLM pre-copy takes about 20 seconds to complete the entire

migration, whereas generic pre-copy takes around 30 seconds. As for the post-copy

strategy, each VM experiences downtime immediately upon issuing the migration com-

mand, causing a significant increase in response time. Due to the post-copy nature of

page faults across the network, it takes a while to resume the internal applications, as

it only transfers the CPU state to the target machine during downtime. In the SLM ap-

proach, application resumption at the destination machine takes approximately 11 sec-

onds, while in the generic method, it takes 12-16 seconds. Even though the application

within the virtual machine has resumed, this does not imply that the entire migration

process has been completed. The generic method takes approximately 20 seconds for

the entire migration process, while the SLM method takes only 13 seconds due to the

COW sharing of pages at the destination.

5.6.7 Performance of SLM on templated VMs

As previously noted, SLM offers broader compatibility compared to TLM when it

comes to retaining various types of existing page sharing during migration. This exper-

iment demonstrates that SLM is also applicable to templated VMs, although it may face

challenges in surpassing TLM’s migration speed. Nonetheless, SLM can prove valu-

86

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1 2 3 4 5

M
e
m
o
ry

 U
s
a
g
e
(M
B
)

Number of 8GB VMs

Source
Destination(Generic-Precopy)

Destination(TLM-Precopy)
Destination(SLM-Precopy)

Figure 5.17: Memory footprint of templated VMs at the source before migration and
destination after migration using generic, TLM and SLM pre-copy.

able for templated VMs in situations where the template file cannot be transmitted in

advance. Nevertheless, since we initially implemented a TLM version of pre-copy, we

briefly evaluate its performance in this section for completeness. We did not implement

a TLM version of post-copy once we decided to move on to SLM implementation.

Figure 5.17 shows the memory footprint of templated VMs using generic, TLM

and SLM pre-copy. The X-axis shows the number of VMs started from the same tem-

plate, and the Y-axis shows their memory usage before migration at the source and after

migration at the destination. With increasing number of VMs, the generic pre-copy re-

sults in significant expansion of memory footprint at the destination since it is unaware

of memory-sharing with the underlying template image. Hence it transfers pages that

were shared with the template multiple times in addition to delta pages. In contrast

TLM preserves the memory footprint of templated VMs at the destination irrespective

of the number of VMs started using the template but doesn’t account for other exisitng

87

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

1 2 3 4 5

To
ta
l
M
ig
ra
tio
n

 T
im
e
(m
s
)

Number of 8GB VMs

Generic-Precopy
TLM-Precopy
SLM-Precopy

Figure 5.18: Total migration time of multiple VMs started from the same template and
migrated concurrently using generic, TLM and SLM pre-copy.

COW page sharing among VMs such as KSM or process fork.Our SLM approach not

only preserves COW page sharing at the destination through templating but also pre-

vents the transfer of the base template ahead of time before the migration begins, thus

ensuring comparable memory usage with the generic pre-copy approach.

Figure 5.18 shows the total migration of multiple templated VMs using generic,

TLM and SLM pre-copy. The X-axis indicates the number of VMs booted from the

same template to be migrated concurrently. The Y-axis shows the total migration time.

Our TLM not only adds live migration capability to templated VMs but also reduces

the total migration time up to 94% when considering only the transfer of delta pages.

In addition to transferring the delta generated by the VMs, our SLM also transfers the

COW shared base template, resulting in nearly identical total migration times, as the

delta produced by idle VMs is negligible.

Figure 5.19 shows the total pages transferred of multiple templated VMs using

88

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

1 2 3 4 5

To
ta
l
P
a
g
e
s
 T
ra
n
s
fe
rr
e
d

Number of 8GB VMs

Generic-Precopy
TLM-Precopy
SLM-Precopy

Figure 5.19: Total pages transferred of multiple VMs started from the same template
and migrated concurrently using generic, TLM and SLM pre-copy.

generic, TLM and SLM pre-copy. The X-axis indicates the number of templated VMs

to be migrated concurrently. The Y-axis shows the total pages transferred during live

migration. Both TLM and SLM significantly reduces the total pages transferred when

compared to the generic pre-copy

5.7 Related Work

We first discuss existing techniques for memory footprint reduction among co-

located VMs within a single node followed by works related to page sharing in live

migration.

Page sharing within a single node: Disco [5] was one of the first systems to pro-

pose and implement transparent page sharing to map multiple identical virtual pages to

a single physical page. Satori [55], modifies guest OSes to identify sharing opportuni-

ties and communicate them to the hypervisor. KSM [1] uses a red-black tree indexed

89

with page content to find identical pages. Unlike Disco, it doesn’t require any modifica-

tion to the guest OS and doesn’t need hash computation of page content. Performance

of KSM depends on the location of the identical pages in the virtual address space.

Since KSM sequentially looks for the potential candidate for merging, the further down

the pages in the process address space, the less likely they will be merged. Difference

Engine [24], in addition to standard COW full-page sharing, also supports sub-page

level sharing and compression to improve memory savings through deduplication. Cat-

alyst [21] offloads the identification of identical pages for deduplication to a GPU and

eliminates sequential scanning of pages. Several techniques have been developed to

efficiently launch multiple lightweight VMs from a common template image, which is

COW-mapped into each VM’s memory [40, 15, 50, 81, 59].

Live Migration with Page Sharing: Traditional pre-copy and post-copy [8, 28] are

unaware of the source’s memory optimizations. Because of this limitation, they send

identical pages multiple times as if they are different, increasing total migration time

and network traffic. Several prior techniques [12, 11, 85] have used content hashing to

find identical and similar memory pages across multiple VMs to reduce/eliminate their

transfer during live migration. However, these techniques do not detect and preserve

pre-existing COW page sharings among co-located VMs at the destination node. Work

in [34] aims to reduce the total migration time by identifying identical pages stored in

the disk and sending only unique pages. This technique experiences high downtime

because the destination fetches identical pages from the disk during downtime. Work

in [7] deduplicates identical pages within the guest address space of a single VM via

free memory pool and recreates page mappings at the destination. However, it does

not address page sharings across multiple co-located VMs. Several studies have at-

90

tempted to minimize the migration time of containers or VMs in distributed edge plat-

forms [52, 25, 10, 87, 6]. These efforts have employed techniques like delaying the

transfer of writable working sets, using lightweight file systems, applying delta encod-

ing, compressing data, and deduplicating identical pages. However, unlike SLM, these

works do not focus on preserving COW page sharings at the destination to prevent an

increase in memory footprint.

5.8 Chapter Summary

In this chapter, we addressed the problem that traditional live VM migration tech-

niques do not preserve COW page sharing among co-located VMs. The resulting ex-

panded memory footprint at the destination can lead to failed migrations, longer mi-

gration times, and increased network traffic. We presented the design, implementation,

and evaluation of Sharing-aware Live Migration (SLM) to address this problem for both

pre-copy and post-copy. SLM preserves all pre-existing page sharings among VMs at

the destination machine irrespective of the underlying sharing mechanism. Our evalua-

tion of SLM on the KVM/QEMU platform shows that SLM not only prevents memory

footprint expansion but also significantly reduces the migration time by up to 59% and

the amount of data transferred by up to 62% with no significant impact on application

performance.

91

6 Conclusions and Future Directions

Traditional live VM migration is unaware of the underlying COW page sharing

among VMs migrated to the same destination. Hence it ends up transferring the shared

pages multiple times. In this dissertation, we designed, implemented, and evaluated

three techniques to make traditional live VM migration aware of pages shared among

VMs migrated to the same destination. The goal was to prevent memory footprint ex-

pansion and memory usage spikes during migration, while also reducing total migration

time and network traffic.

6.1 Inter-host Template-aware Live Migration of Virtual Machines

We proposed Generic Template-aware Live Migration (Generic TLM) which ad-

dresses this shortcoming of pre-copy migration by ensuring that multiple templated

VM instances maintain their COW page sharing with the base template even at the des-

tination node and transfers only the delta pages that differ among various VM instances.

Generic TLM requires that we first track delta (or dirty) pages for VM instances before

migration. Then, during Generic TLM, only the delta pages are transferred for each

instance. Generic TLM, besides preventing memory footprint expansion, also reduces

the total migration time by up to 95.37% and network traffic by up to 92.15%.

92

6.2 Intra-host Template-aware Live Migration of Virtual Machines

Using the traditional pre-copy live migration is inefficient for migration within the

same host as the existing memory pages are duplicated instead of transferring the own-

ership. Using Generic TLM still requires copying the delta pages generated by multiple

templated VM instances. We designed an Intra-host TLM that tracks delta pages di-

verging from the base template and transfers their page ownership to the destination

templated VMs, preventing unnecessary copying of additional dirtied pages. User-

faultfd - a Linux mechanism to handle page faults in user space - is used by QEMU

to continuously monitor for any write events and redirect them to a dedicated memory

backend file. During migration, the source only transfers the backend file offset for

each page without copying the page content during the downtime. The destination then

remaps the virtual address of the pages to the corresponding location at the backend file

using the received offsets.

6.3 Sharing-aware Live Migration of Virtual Machines

While the Generic TLM approach works well in efficiently migrating multiple tem-

plated VMs, we realized that the problem of sharing-awareness in live migration extends

beyond just templated VMs. Specifically, Generic TLM does not account for pages

shared among VMs due to other memory sharing mechanisms besides templating, such

as memory deduplication performed by KSM in Linux, or simple COW mappings due

to process fork and file I/O operations. We proposed Sharing-Aware Live Migration

(SLM) [18] to address the above problem. The key insight behind SLM is that irrespec-

tive of the underlying page-sharing mechanism, multiple COW-mapped guest pages

will map to the same page in the physical memory. SLM examines the Physical Frame

93

Number (PFN) and Virtual Page Number (VPN) of each guest page being transferred

and classifies the pages into three types. Unique Pages are those that have not been

transferred yet. Shared Pages are those that have already been transferred. Dirty Pages

are those that require retransmission due to being dirty in the previous pre-copy round.

For Unique and Dirty pages, SLM transfers the entire page, including the page type

and its PFN at the source, as a unique identifier. However, for Shared Pages, SLM

does not send the page content, instead it only sends the page type and the PFN. At

the destination, SLM COW maps the Shared Pages to the corresponding common page

thus retaining the COW-shared mappings the same as the source. Besides preserving all

pre-existing page sharings at the destination machine, SLM reduces the total migration

time by up to 59% and network traffic by up to 62%.

94

Bibliography

[1] Andrea Arcangeli, Izik Eidus, and Chris Wright. Increasing memory density by

using KSM. In Proc. of the Linux Symposium, 2009.

[2] Wissal Attaoui, Essaid Sabir, Halima Elbiaze, and Mohsen Guizani. Vnf and

cnf placement in 5g: Recent advances and future trends. IEEE Transactions on

Network and Service Management, 2023.

[3] Hardik Bagdi, Rohith Kugve, and Kartik Gopalan. Hyperfresh: Live refresh of

hypervisors using nested virtualization. In Proc. of the Asia-Pacific Workshop on

Systems, 2017.

[4] Norman Bobroff, Andrzej Kochut, and Kirk Beaty. Dynamic placement of vir-

tual machines for managing SLA violations. In Proc. of IFIP/IEEE International

Symposium on Integrated Network Management, pages 119–128, 2007.

[5] Edouard Bugnion, Scott Devine, Kinshuk Govil, and Mendel Rosenblum. Disco:

Running commodity operating systems on scalable multiprocessors. ACM Trans-

actions on Computer Systems (TOCS), 1997.

[6] Lucas Chaufournier, Prateek Sharma, Franck Le, Erich Nahum, Prashant Shenoy,

and Don Towsley. Fast transparent virtual machine migration in distributed edge

clouds. In Proc. of ACM/IEEE Symposium on Edge Computing, pages 1–13, 2017.

[7] Jui-Hao Chiang, Han-Lin Li, and Tzi-cker Chiueh. Introspection-based memory

de-duplication and migration. ACM SIGPLAN Notices, 48(7):51–62, 2013.

[8] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Chris-

tian Limpach, Ian Pratt, and Andrew Warfield. Live migration of virtual machines.

95

In Proc. of USENIX Symposium on Networked Systems Design and Implementa-

tion (NSDI), 2005.

[9] Andreas Costi, Brian Johannesmeyer, Erik Bosman, Cristiano Giuffrida, and Her-

bert Bos. On the effectiveness of same-domain memory deduplication. In Proc.

of European Workshop on System Security, pages 29–35, 2022.

[10] Rohit Das and Subhajit Sidhanta. LIMOCE: Live migration of containers in the

edge. In Proc. of International Symposium on Cluster, Cloud and Grid Computing

(CCGrid), 2021.

[11] Umesh Deshpande, Brandon Schlinker, Eitan Adler, and Kartik Gopalan. Gang

migration of virtual machines using cluster-wide deduplication. In Proc. of Inter-

national Symposium on Cluster, Cloud and Grid Computing (CCGrid), 2013.

[12] Umesh Deshpande, Wang Xiaoshuang, and Kartik Gopalan. Live gang migra-

tion of virtual machines. In Proc. of High Performance Parallel and Distributed

Computing (HPDC), 2011.

[13] Spoorti Doddamani, Piush Sinha, Hui Lu, Tsu-Hsiang K. Cheng, Hardik H. Bagdi,

and Kartik Gopalan. Fast and live hypervisor replacement. In Proc. of ACM

International Conference on Virtual Execution Environments (VEE), 2019.

[14] Pavel Dovgalyuk, Natalia Fursova, Ivan Vasiliev, and Vladimir Makarov. Qemu-

based framework for non-intrusive virtual machine instrumentation and introspec-

tion. In Proc.of the Joint Meeting on Foundations of Software Engineering, 2017.

[15] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang Qin,

Qixuan Wu, and Haibo Chen. Catalyzer: Sub-millisecond startup for serverless

computing with initialization-less booting. In Proc. of International Conference

on Architectural Support for Programming Languages and Operating Systems,

2020.

[16] Izik Eidus and Hugh Dickins. Kernel Samepage Merging. https://www.

kernel.org/doc/Documentation/vm/ksm.txt, 2009.

96

https://www.kernel.org/doc/Documentation/vm/ksm.txt
https://www.kernel.org/doc/Documentation/vm/ksm.txt

[17] Roja Eswaran, Mingjie Yan, and Kartik Gopalan. Template-aware live migration

of virtual machines. Accepted for publication in Proc. of ACM/IEEE Symposium

on Edge Computing Workshop, 2023.

[18] Roja Eswaran, Mingjie Yan, and Kartik Gopalan. Tackling memory footprint

expansion during live migration of virtual machines. In Proc. of International

Symposium on Cluster, Cloud and Grid Computing (CCGrid), 2024.

[19] Fatalerrors. Dirtybitmap. https://www.fatalerrors.org/a/

qemu-synchronization-dirty-pages-principle.html.

[20] Dinuni Fernando, Jonathan Terner, Kartik Gopalan, and Ping Yang. Live migra-

tion ate my VM: Recovering a virtual machine after failure of post-copy live mi-

gration. In Proc. of IEEE Conference on Computer Communications Workshops

Annual Computer Security Applications Conference, 2019.

[21] Anshuj Garg, Debadatta Mishra, and Purushottam Kulkarni. Catalyst: GPU-

assisted rapid memory deduplication in virtualization environments. In Proc. of

ACM International Conference on Virtual Execution Environments (VEE), 2017.

[22] GNU. bypass-Patch. https://lists.gnu.org/archive/html/qemu-devel/

2018-04/msg02250.html.

[23] Google. Kubernetes engine. https://cloud.google.com/

kubernetes-engine.

[24] Diwaker Gupta, Sangmin Lee, Michael Vrable, Stefan Savage, Alex C Snoeren,

George Varghese, Geoffrey M Voelker, and Amin Vahdat. Difference engine:

Harnessing memory redundancy in virtual machines. In Communications of the

ACM. ACM New York, NY, USA, 2010.

[25] Kiryong Ha, Yoshihisa Abe, Thomas Eiszler, Zhuo Chen, Wenlu Hu, Brandon

Amos, Rohit Upadhyaya, Padmanabhan Pillai, and Mahadev Satyanarayanan. You

can teach elephants to dance: Agile VM handoff for edge computing. In Proc. of

ACM/IEEE Symposium on Edge Computing, 2017.

97

https://www.fatalerrors.org/a/qemu-synchronization-dirty-pages-principle.html
https://www.fatalerrors.org/a/qemu-synchronization-dirty-pages-principle.html
https://lists.gnu.org/archive/html/qemu-devel/2018-04/msg02250.html
https://lists.gnu.org/archive/html/qemu-devel/2018-04/msg02250.html
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine

[26] Jacob Gorm Hansen and Eric Jul. Self-migration of operating systems. In Proc.

of ACM SIGOPS European Workshop, 2004.

[27] David Hildenbrand, Martin Schulz, and Nadav Amit. Copy-on-pin: The missing

piece for correct copy-on-write. In Proc. of International Conference on Architec-

tural Support for Programming Languages and Operating Systems, 2023.

[28] Michael R Hines, Umesh Deshpande, and Kartik Gopalan. Post-copy live migra-

tion of virtual machines. ACM SIGOPS Operating Systems Review, 2009.

[29] Alex Ho, Michael Fetterman, Christopher Clark, Andrew Warfield, and Steven

Hand. Practical taint-based protection using demand emulation. In Proc. of the

ACM European Conference on Computer Systems (EuroSys), 2006.

[30] Jinhua Hu, Jianhua Gu, Guofei Sun, and Tianhai Zhao. A scheduling strategy

on load balancing of virtual machine resources in cloud computing environment.

In International Symposium on Parallel Architectures, Algorithms and Program-

ming, 2010.

[31] Dong Huang, Bingsheng He, and Chunyan Miao. A survey of resource man-

agement in multi-tier web applications. IEEE Transactions on Communications

Surveys & Tutorials, 2014.

[32] IBM. Kubernetes services. https://www.ibm.com/cloud/

containerservice.

[33] iPerf. iPerf: The TCP/UDP bandwidth measurement tool. http://dast.nlanr.

net/Projects/Iperf/.

[34] Changyeon Jo, Erik Gustafsson, Jeongseok Son, and Bernhard Egger. Efficient

live migration of virtual machines using shared storage. ACM SIGPLAN Notices,

2013.

[35] Kernel.org. Admin-guide Userfaulfd. https://docs.kernel.org/

admin-guide/mm/userfaultfd.html.

98

https://www.ibm.com/cloud/containerservice
https://www.ibm.com/cloud/containerservice
http://dast.nlanr.net/Projects/Iperf/
http://dast.nlanr.net/Projects/Iperf/
https://docs.kernel.org/admin-guide/mm/userfaultfd.html
https://docs.kernel.org/admin-guide/mm/userfaultfd.html

[36] Kernel.org. Userfaultfd. https://docs.kernel.org/admin-guide/mm/userfaultfd.

[37] Shinji Kikuchi and Yasuhide Matsumoto. Impact of live migration on multi-tier

application performance in clouds. In Proc. of IEEE International Conference on

Cloud Computing, 2012.

[38] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. kvm: the

linux virtual machine monitor. In Proc. of the Linux Symposium, 2007.

[39] Santhosh Kumar T, Debadatta Mishra, Biswabandan Panda, and Nayan Desh-

mukh. CoWLight: Hardware assisted copy-on-write fault handling for secure

deduplication. In Proc. of Intl. Workshop on Hardware and Architectural Support

for Security and Privacy, 2019.

[40] Horacio Andrés Lagar-Cavilla, Joseph Andrew Whitney, Adin Matthew Scannell,

Philip Patchin, Stephen M Rumble, Eyal De Lara, Michael Brudno, and Mahadev

Satyanarayanan. SnowFlock: Rapid virtual machine cloning for cloud computing.

In Proc. of the ACM European Conference on Computer Systems (EuroSys), 2009.

[41] James Lee and Brent Ware. Open Source Web Development with LAMP: Using

Linux, Apache, MySQL, Perl, and PHP. Addison-Wesley Professional, 2003.

[42] Seung-Hwan Lim, Jae-Seok Huh, Youngjae Kim, and Chita R Das. Migration, as-

signment, and scheduling of jobs in virtualized environment. In Proc. of USENIX

Hotcloud Workshop, 2011.

[43] Li Lin, Xiaofei Liao, Hai Jin, and Peng Li. Computation offloading toward edge

computing. Proc. of IEEE International Conference on Cloud Computing, 2019.

[44] Jens Lindemann and Mathias Fischer. A memory-deduplication side-channel at-

tack to detect applications in co-resident virtual machines. In Proc. of the Annual

ACM Symposium on Applied Computing (SAC), pages 183–192, 2018.

[45] Linux-manpages. Man-userfaultfd. https://man7.org/linux/man-pages/

man2/userfaultfd.2.html.

99

https://man7.org/linux/man-pages/man2/userfaultfd.2.html
https://man7.org/linux/man-pages/man2/userfaultfd.2.html

[46] Linux-manpages. MMap Description. https://man7.org/linux/man-

pages/man2/mmap.2.html.

[47] Haikun Liu and Bingsheng He. Vmbuddies: Coordinating live migration of multi-

tier applications in cloud environments. IEEE Transactions on Parallel and Dis-

tributed Systems, 2014.

[48] Haikun Liu, Hai Jin, Xiaofei Liao, Wei Deng, Bingsheng He, and Cheng-zhong

Xu. Hotplug or ballooning: A comparative study on dynamic memory manage-

ment techniques for virtual machines. IEEE Transactions on Parallel and Dis-

tributed Systems, 2015.

[49] Redis Ltd. Redis pipelining. https://redis.io/docs/manual/pipelining/.

[50] Costin Lupu, Radu Nichita, Doru-Florin Blânzeanu, Mihai Pogonaru, Răzvan

Deaconescu, and Costin Raiciu. Nephele: Extending virtualization environments

for cloning unikernel-based VMs. In Proc. of the ACM European Conference on

Computer Systems (EuroSys), 2023.

[51] Quang-Trung Luu, Sylvaine Kerboeuf, and Michel Kieffer. Admission control

and resource reservation for prioritized requests with guaranteed sla under uncer-

tainties. IEEE Transactions on Network and Service Management, 2022.

[52] Lele Ma, Shanhe Yi, Nancy Carter, and Qun Li. Efficient live migration of edge

services leveraging container layered storage. IEEE Transactions on Mobile Com-

puting, 2019.

[53] Pavel Mach and Zdenek Becvar. Mobile edge computing: A survey on archi-

tecture and computation offloading. Proc. of IEEE International Conference on

Communications(ICC), 2017.

[54] Microsoft. Kubernetes service. https://azure.microsoft.com/en-us/

products/kubernetes-service.

100

https://redis.io/docs/manual/pipelining/
https://azure.microsoft.com/en-us/products/kubernetes-service
https://azure.microsoft.com/en-us/products/kubernetes-service

[55] Grzegorz Miłós, Derek G Murray, Steven Hand, and Michael A Fetterman. Satori:

Enlightened page sharing. In Proc. of USENIX Annual Technical Conference

(ATC), pages 1–1, 2009.

[56] Saad Mubeen, Sara Abbaspour Asadollah, Alessandro Vittorio Papadopoulos,

Mohammad Ashjaei, Hongyu Pei-Breivold, and Moris Behnam. Management of

service level agreements for cloud services in IoT: A systematic mapping study.

IEEE access, 2017.

[57] Michael Nelson, Beng-Hong Lim, and Greg Hutchins. Fast transparent migration

for virtual machines. In Proc. of USENIX Annual Technical Conference (ATC),

pages 391–394, 2005.

[58] Fangxiao Ning, Min Zhu, Ruibang You, Gang Shi, and Dan Meng. Group-based

memory deduplication against covert channel attacks in virtualized environments.

In Proc. of IEEE Trustcom/BigDataSE/ISPA, pages 194–200, 2016.

[59] Open Infrastructure. Kata Containers. https://katacontainers.io.

[60] Patchwork. Template-Patch. http://patchwork.ozlabs.org/project/

qemu-devel/list.

[61] QEMU. Memory-QEMU. https://www.qemu.org/memory.html.

[62] QEMU. System emulation. https://www.qemu.org/system/index.html.

[63] QEMU. Userspace bugs. https://gitlab.com/qemu-project/qemu/-/

issues.

[64] QEMU.org. Migration-Streams. https://www.qemu.org/docs/master/

devel/migration/main.html.

[65] QNX. MMap mechanism. https://www.qnx.com/developers/docs/7.1/.

[66] Shashank Rachamalla, Debadatta Mishra, and Purushottam Kulkarni. Share-o-

meter: An empirical analysis of KSM based memory sharing in virtualized sys-

tems. In International Conference on High Performance Computing, 2013.

101

https://katacontainers.io
http://patchwork.ozlabs.org/project/qemu-devel/list
http://patchwork.ozlabs.org/project/qemu-devel/list
https://www.qemu.org/memory.html
https://www.qemu.org/system/index.html
https://gitlab.com/qemu-project/qemu/-/issues
https://gitlab.com/qemu-project/qemu/-/issues
https://www.qemu.org/docs/master/devel/migration/main.html
https://www.qemu.org/docs/master/devel/migration/main.html

[67] Redis Ltd. Redis benchmark. https://redis.io/docs/management/

optimization/benchmarks/.

[68] Yi Ren, Renshi Liu, Qi Zhang, Jianbo Guan, Ziqi You, Yusong Tan, and Qingbo

Wu. An efficient and transparent approach for adaptive intra-and inter-node virtual

machine communication in virtualized clouds. In IEEE International Conference

on Parallel and Distributed Systems (ICPADS), 2019.

[69] Christoph Rohland. Tmpfs. https://docs.kernel.org/filesystems/

tmpfs.html.

[70] Adam Ruprecht, Danny Jones, Dmitry Shiraev, Greg Harmon, Maya Spivak,

Michael Krebs, Miche Baker-Harvey, and Tyler Sanderson. VM live migration

at scale. ACM SIGPLAN Notices, 2018.

[71] Shashank Sahni and Vasudeva Varma. A hybrid approach to live migration of vir-

tual machines. In IEEE international conference on cloud computing in emerging

markets (CCEM). IEEE, 2012.

[72] Prateek Sharma, Lucas Chaufournier, Prashant Shenoy, and Y. C. Tay. Containers

and virtual machines at scale: A comparative study. In Proc. of Middleware, 2016.

[73] Piush K Sinha, Spoorti S Doddamani, Hui Lu, and Kartik Gopalan. mwarp: Accel-

erating intra-host live container migration via memory warping. In Proc. of IEEE

Conference on Computer Communications Workshops Annual Computer Security

Applications Conference, 2019.

[74] Jonathan M. Smith and Gerald Q Maguire Jr. Effects of copy-on-write memory

management on the response time of unix fork operations. Computing Systems,

1988.

[75] The Apache Software Foundation. Apachebench. https://httpd.apache.

org/docs/2.4/programs/ab.html, 2022.

102

https://redis.io/docs/management/optimization/benchmarks/
https://redis.io/docs/management/optimization/benchmarks/
https://docs.kernel.org/filesystems/tmpfs.html
https://docs.kernel.org/filesystems/tmpfs.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html

[76] The Linux kernel user’s and administrator’s guide. Examining process

page tables. https://www.kernel.org/doc/html/latest/admin-guide/

mm/pagemap.html.

[77] Akshat Verma, Puneet Ahuja, and Anindya Neogi. pMapper: Power and migration

cost aware application placement in virtualized systems. In Proc. of Middleware,

2008.

[78] VMware. Container Services. https://cloud.vmware.com/vmwarepks.

[79] Michael Vrable, Justin Ma, Jay Chen, David Moore, Erik Vandekieft, Alex C

Snoeren, Geoffrey M Voelker, and Stefan Savage. Scalability, fidelity, and con-

tainment in the Potemkin virtual honeyfarm. In Proc. of ACM Symposium on

Operating Systems Principles (SOSP), pages 148–162, 2005.

[80] Jian Wang, Kwame-Lante Wright, and Kartik Gopalan. XenLoop: A transparent

high performance inter-VM network loopback. In Proc. of High Performance

Parallel and Distributed Computing (HPDC), 2008.

[81] Kun Wang, Jia Rao, and Cheng-Zhong Xu. Rethink the virtual machine template.

ACM SIGPLAN Notices, 2011.

[82] Jinpeng Wei, Lok K. Yan, and Muhammad Azizul Hakim. Mose: Live migra-

tion based on-the-fly software emulation. In Proc. of the 31st Annual Computer

Security Applications Conference, 2015.

[83] Jidong Xiao, Zhang Xu, Hai Huang, and Haining Wang. Security implications of

memory deduplication in a virtualized environment. In IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN), 2013.

[84] Fei Xu, Fangming Liu, Linghui Liu, Hai Jin, Bo Li, and Baochun Li. iAware:

Making live migration of virtual machines interference-aware in the cloud. IEEE

Transactions on Cloud Computing, 2013.

103

https://www.kernel.org/doc/html/latest/admin-guide/mm/pagemap.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/pagemap.html
https://cloud.vmware.com/vmwarepks

[85] Xiang Zhang, Zhigang Huo, Jie Ma, and Dan Meng. Exploiting data deduplica-

tion to accelerate live virtual machine migration. In Proc. of IEEE International

Conference on Cluster Computing, 2010.

[86] Xiantao Zhang, Xiao Zheng, Zhi Wang, Qi Li, Junkang Fu, Yang Zhang, and

Yibin Shen. Fast and scalable VMM live upgrade in large cloud infrastructure.

In Proc. of International Conference on Architectural Support for Programming

Languages and Operating Systems, 2019.

[87] Zhe Zhou, Xintong Li, Xiaoyang Wang, Zheng Liang, Guangyu Sun, and Guojie

Luo. Hardware-assisted service live migration in resource-limited edge computing

systems. In Proc. of ACM/IEEE Design Automation Conference (DAC), 2020.

104

ProQuest Number:

INFORMATION TO ALL USERS
The quality and completeness of this reproduction is dependent on the quality

and completeness of the copy made available to ProQuest.

Distributed by
ProQuest LLC a part of Clarivate ().

Copyright of the Dissertation is held by the Author unless otherwise noted.

This work is protected against unauthorized copying under Title 17,
United States Code and other applicable copyright laws.

This work may be used in accordance with the terms of the Creative Commons license
or other rights statement, as indicated in the copyright statement or in the metadata

associated with this work. Unless otherwise specified in the copyright statement
or the metadata, all rights are reserved by the copyright holder.

ProQuest LLC
789 East Eisenhower Parkway

Ann Arbor, MI 48108 USA

31490188

2024

	List of Table
	List of Figures
	List of Abbreviations
	Introduction
	Problem Statement: Lack of Sharing-awareness in Live Migration:
	Contributions
	Outline

	Background
	KVM/QEMU and Live Migration
	Performance Metrics
	Migration Streams
	Live Migration Techniques
	Pre-copy Live Migration
	Post-copy Live Migration
	Hybrid Live Migration

	Existing COW optimizations
	VM Templating
	Kernel Samepage Merging (KSM)
	mmap and COW Protection

	Transferring Ownership of Pages
	 Userfaultfd

	Inter-host Template-aware Live Migration
	Problem Statement
	Contributions
	Design
	Seamless Templating
	Chained Templating
	Snapshot Overhead
	Memory-layout-aware and Parallel Snapshot

	Implementation
	Evaluation
	Related Work
	Chapter Summary

	Intra-host Template-aware Live Migration
	Problem Statement
	Contributions
	Problem Demonstration: Memory Spikes During Intra-host Live Migration
	Design of Intra-host TLM
	Implementation
	Saving delta of Source VMs
	Transferring ownership of delta from Source VMs

	Evaluation
	Reduced Memory Footprint
	Improvement in Total Migration Time
	Reduction in Pages Transferred
	Effect on Downtime

	Related Work
	Chapter Summary

	Sharing-aware Live Migration
	Problem Statement
	Contributions
	Problem Demonstration
	SLM Design
	Identifying Page Type at Source
	Preserving COW Sharing at Destination

	Implementation
	Retrieval and Tracking of PFN
	In-Memory Backend File
	Synchronization Across Multiple VMs

	Evaluation
	Live Migration of Single VM
	Memory Footprint of VMs After Migration
	TMT, Downtime, and Network Traffic Reduction
	Network Bandwidth Using iPerf
	Redis Cluster Benchmark
	LAMP/ApacheBench Response Time
	Performance of SLM on templated VMs

	Related Work
	Chapter Summary

	Conclusions and Future Directions
	Inter-host Template-aware Live Migration of Virtual Machines
	Intra-host Template-aware Live Migration of Virtual Machines
	Sharing-aware Live Migration of Virtual Machines

