
Incorporating Memory Sharing-awareness in
Multi-VM Live Migration

Roja Eswaran, Mingjie Yan, and Kartik Gopalan

Computer Science, Binghamton University

Contact: {reswara1,myan28,kartik}@binghamton.edu

Abstract—One of the key challenges of edge computing is
managing the limited resources available at the edge, especially
memory and network bandwidth. Virtual machines (VMs) can
ensure both isolation and efficient resource utilization within the
edge computing infrastructure.

Live migration is a crucial technique in edge computing
infrastructure to transfer running VMs from one physical node to
another. This can occur either within the same host (Intra-host)
or between different hosts (Inter-host). Current live migration
techniques face challenges, such as lack of awareness of dupli-
cated pages for inter-host migration and inefficient handling of
co-located memory for intra-host migration.

In this paper, we describe our work on three efficient ways to
incorporate sharing-awareness in live migration of multiple VMs
while avoiding memory and network resource contention. For
inter-host migration, our techniques rely on existing Copy-On-
Write (COW) optimization performed by the host/hypervisor. This
enables the transfer of a copy of the page only once and preserves
existing COW sharing by remapping them at the destination. For
intra-host migration, our technique implements a mechanism
to identify shared pages and transfer their ownership (via a
userfaultfd-based mechanism) instead of copying them. Besides
reducing network traffic and memory footprint by eliminating
unwanted copying, our techniques also result in a shorter total
migration time, thereby freeing additional resources involved in
migration as quickly as possible.

Index Terms—Cloud Computing, Live Migration, Operating
System, Deduplication, Copy-on-Write Page Sharing.

I. INTRODUCTION

Live migration facilitates the seamless transfer of active

VMs from one physical node to another either within the same

or different hosts. Inter-host live migration involves relocating

a VM from one node to another within the same data center.

During this process, the memory, CPU, and I/O states of the

VMs are transferred. Since the disk images can be stored in

a shared network file system, there is no need to transfer the

disk. This technique is widely used for a variety of purposes,

such as load balancing [1], [2], [3], infrastructure maintenance,

meeting service level agreements [4], security-related updates,

energy savings [5], hardware failure and seamless maintenance

of physical edge nodes. Intra-host live migration involves

relocating a VM within the same host from under the control

of one emulation runtime instance (such as a QEMU process)

to another instance, for reasons such as live runtime updates,

bug fixes, and VM introspection [6], [7], [8].

The problem with the current inter-host live migration is

that it is not aware of the COW memory sharing among pages

of one or more VMs that might be migrated concurrently.

As a result, a shared page may be transferred multiple times

to the destination increasing the VMs’ memory footprint,

network traffic, and total migration time. Though intra-host

live migration is performed within the same host, it may end

up copying VMs’ memory instead of only transferring the

ownership of the pages. In multi-VM intra-host migration,

COW-shared pages will be copied multiple times, as with inter-

host migration. Our contributions are to make both single- and

multi-VM live migrations aware of COW-shared memory in

order to avoid unnecessary page transfers.

1) We identify and demonstrate the limitations of current

inter-host and intra-host live migration techniques and

motivate a better solution with awareness of COW-

shared pages.

2) We present a Generic Template-aware Live Migration

(Generic TLM) of Virtual Machines, which addresses

the limitations of pre-copy live migration being unaware

of the COW sharing from templated VMs. We also

present a more general approach, called Sharing-aware

Live Migration (SLM) that identifies COW sharing

among VMs irrespective of the underlying memory opti-

mization techniques, such as Kernel Same-page Merging

(KSM), VM Templating, and others.

3) We present an Intra-host TLM that efficiently identifies

COW-shared memory among multiple co-located VMs

and transfer their page ownership instead of copying

them.

4) We implemented a prototype of Generic TLM, SLM, and

Intra-host TLM in the KVM/QEMU [9] virtualization

platform and evaluated it using several benchmarks.

Besides reducing the memory footprint, our techniques

also significantly reduce the total migration time by up

to 95%, 60%, 85% respectively.

This doctoral symposium paper summarizes results from our

prior publications in SEC EdgeComm 2023 [10] and CCGrid-

2024 [11] besides introducing our ongoing work on intra-host

TLM. In the rest of this paper, we briefly describe our main

contributions in Generic TLM, SLM, and Intra-host TLM, and

a summary of the results.

II. INTER-HOST LIVE MIGRATION

A. Generic Template-aware Live Migration (Generic TLM)

In this section, we first describe the background of the

existing COW technique, VM Templating. We then discuss

667

2024 IEEE 24th International Symposium on Cluster, Cloud and Internet Computing (CCGrid)

979-8-3503-9566-2/24/$31.00 ©2024 IEEE
DOI 10.1109/CCGrid59990.2024.00084

Host OS
RAM

d1

d2
d3

dn

Host OS

RAM

d2
d3

d1
dn

Migration

VM1 VM2 VM3 VMn VM3VM2VM1 VMn... ...

Source Destination

Fig. 1: Template-aware Live migration works by migrating

only the delta pages during migration. The shared VM tem-

plate is available to the destination either over a networked

storage or transferred ahead of time before migration begins.

the limitation of Pre-copy live migration, which is unaware

of VM Templates. Finally, we conclude with our prototype

Generic TLM, which retains VM Template sharing during live

migration.

VM Templating: Instantiating a VM from scratch typi-

cally takes a long time because it involves initialization of

software, guest OS, and virtual hardware, including time to

load the corresponding contents to memory from the disk. VM

templating allows multiple new VM instances to be quickly

instantiated from a single pre-checkpointed VM image (or

template). Figure 1 (Source) shows that multiple templated

VMs can be booted from a shared VM template which is

COW-mapped into each VM instance. Any additional memory

dirtied by the templated VMs (called delta) is stored separately

for each VM instance.

Limitation of Pre-copy Live Migration: In Figure 2,

we show the problem that arises during the migration of

templated VMs using pre-copy. The X-axis represents the

number of VMs instantiated from a shared template that

are being migrated, and the Y-axis represents their collective

memory footprint as measured by the free command in

Linux. Prior to migration, we measured the memory usage

of the templated VMs at the source. Subsequently, we mea-

sured memory usage again at the destination after migration.

Since the traditional pre-copy live migration is unaware of

page sharing among templated VMs, it redundantly transfers

and replicates identical pages, breaking the underlying COW

sharing.

Generic TLM: We proposed Generic Template-aware Live

Migration [10], as shown in Figure 1, which addresses this

shortcoming of pre-copy migration by ensuring that multiple

templated VM instances maintain their COW page sharing

with the base template even at the destination node and transfer

only the delta pages that differ among various VM instances.

Generic TLM requires that we first track delta (or dirty) pages

for VM instances before migration. Then, during migration,

only the delta pages are transferred for each instance. Generic

TLM, besides preventing memory footprint expansion, also

reduces the total migration time by up to 95.37% and network

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

10 20 30 40 50

M
em

or
y

Us
ag

e(
M

B)

Number of 1GB VMs

Source
Destination

Fig. 2: Pre-copy Live Migration is unaware of the COW-shared

base template and breaks the sharing at the destination.

 0

 500

 1000

 1500

 2000

 2500

 3000

1 2 4 6 8

M
em

or
y

Us
ag

e(
M

B)

Number of 1GB VMs

Source(Pre-copy)
Destination(Pre-copy)

Source(Post-copy)
Destination(Post-copy)

Fig. 3: Memory footprint of VMs expands at destination after

both pre-copy and post-copy live migration, because pages

shared among VMs at the source are replicated for each VM

at the destination.

traffic by up to 92.15%.

B. Sharing-aware Live Migration (SLM)

In this section, we first describe the background of the

existing COW technique, Kernel Samepage Merging. We then

discuss the limitations of Pre-copy, Post-copy, and Generic

TLM. Finally, we conclude with our prototype SLM, which

retains all COW page sharing for all types of VMs.

Kernel Samepage Merging: Deduplication techniques,

such as Kernel Samepage Merging [12] (KSM), perform

memory deduplication among co-located VMs to fit more VMs

into physical memory. Many identical pages exist when the

same guest OS and applications run in different co-located

VMs, consuming extra memory. KSM regularly scans the

memory of all VMs, identifies identical pages, and replaces

them with a single COW-shared page.

Limitation of Pre-copy, Post-copy and Generic TLM:
Figure 3 shows that both pre-copy and post-copy, which are

unaware of existing COW-shared pages among VMs, result

in a larger memory footprint at the destination than at the

source after live migration completes. While the Generic

TLM approach works well in efficiently migrating multiple

668

Host

VM

I/O
vCPU
Device

VM

Virtual
Disk

Intra-host

RAM

Mem

(a) Disabling bypass-memory

Host

VM

I/O
vCPU
Device

VM

Virtual
Disk

Intra-host

RAM

(1)

(3)

(2)

(4)bypass-
memory

tmpfs

(b) Enabling bypass-memory

Fig. 4: (a) Without the bypass-memory flag, the memory

of the VM is copied again. (b) The bypass-memory flag

skips copying the memory and only transfers I/O, vCPU, and

Device states.

templated VMs, we realized that the problem of sharing-

awareness in live migration extends beyond just templated

VMs. Specifically, Generic TLM does not account for pages

shared among VMs due to other memory sharing mechanisms

besides templating, such as memory deduplication performed

by KSM in Linux, or simple COW mappings due to process

fork and file I/O operations.

SLM: We proposed Sharing-Aware Live Migration

(SLM) [11] to address the above problem. The key insight

behind SLM is that irrespective of the underlying page-sharing

mechanism, multiple COW-mapped guest pages will map to

the same page in the physical memory. SLM examines the

Physical Frame Number (PFN) and Virtual Page Number

(VPN) of each guest page being transferred and classifies

the pages into three types. Unique Pages are those that have

not been transferred yet. Duplicate Pages are those that have

already been transferred. Dirty Pages are those that require re-

transmission due to being dirty in the previous pre-copy round.

For Unique and Dirty pages, SLM transfers the entire page,

including the page type and its PFN at the source, as a unique

identifier. However, for Duplicate Pages, SLM does not send

the page content, instead it only sends the page type and the

PFN. At the destination, SLM COW maps the Duplicate Pages

to the corresponding common page thus retaining the COW-

shared mappings the same as the source. Besides preserving

all pre-existing page sharings at the destination machine, SLM

reduces the total migration time by up to 59% and network

traffic by up to 62%.

III. INTRA-HOST LIVE MIGRATION

Intra-host live migration involves relocating a VM within

the same host from under the control of one emulation runtime

instance (such as a QEMU process) to another instance, for

reasons such as live runtime updates, bug fixes, and VM

introspection [6], [7], [8].

Limitations of existing techniques: Using the traditional

pre-copy live migration is inefficient for migration within

the same host as the existing memory pages are dupli-

cated instead of transferring the ownership as shown in Fig-

ure 4 (a). Although using the backend-file with the help of

bypass-memory flag can transfer the ownership of pages

 0

 1000

 2000

 3000

 4000

 5000

 6000

10 20 30 40 50

M
em

or
y

Us
ag

e(
M

B)

Number of 1GB VMs

B (a)
B + Q + VM (b)

B + Q + VM + Q' (c)
B + Q + VM + Q' + VM' (d)

B + Q' + VM' (e)

Fig. 5: Generic TLM is inefficient for migrating multiple

templated VMs within the same host because it copies already

existing delta pages instead of transferring their ownership

thereby causing a memory bump (c)(d).

instead of copying them for regular non-templated VMs as

shown in Figure 4 (b), it cannot be applied to templated VMs

as it breaks the COW-shared base template after migration.

Using Generic TLM still requires copying the delta pages

generated by multiple templated VM instances. In Figure 5,

we show the problem that arises during the migration of

templated VMs using Generic TLM within the same host.

The X-axis represents the number of VMs instantiated from

a COW-shared template that is being migrated, and the Y-

axis represents their collective memory footprint as measured

by the free command in Linux. The legend of the graph

provides the following explanations: (a) represents the system

memory before executing any QEMU (Q) or VM. (b) signifies

the system memory usage after booting a VM using Q. (c)

illustrates the system memory usage after initiating a new Q’

in listening mode. (d) showcases the system memory usage

after live migration, where Q, Q’, VM, and VM’ are all

alive. Finally, (e) displays the system memory usage after

terminating Q and VM, leaving only Q’ and VM’ alive. When

using Generic TLM for live migrating templated VMs within

the same node, there is an observable rise in the memory bump

(c) and (d) as shown in Figure 5, due to the duplication of delta

pages.

Intra-host TLM: As shown in Figure 6, Intra-host TLM

tracks delta pages diverging from the base template and

transfers their page ownership to the destination templated

VMs, preventing unnecessary copying of additional dirtied

pages. Userfaultfd - a Linux mechanism to handle page faults

in user space - is used by QEMU to continuously monitor

for any write events and redirect them to a dedicated memory

backend-file. During migration, the source only transfers the

backend-file offset for each page without copying the page

content during the downtime. The destination then remaps the

virtual address of the pages to the corresponding location at

the backend-file using the received offsets.

Evaluation: We evaluated the performance of Intra-host

TLM using idle templated VMs. Our experimental setup

669

Source Host

VM VM

RAM

VM VM VM VM

Delta I/O, vCPU, Device Userfaultfd

(1)(1)(1)

(2) (2) (2)

(4)
(4)

(4)

(3) (3) (3)

Fig. 6: High-level overview of Intra-host TLM which uses

userfault-based mechanism to transfer the ownership of delta

pages thus avoiding unnecessary copying overhead.

consists of three machines with two Intel Xeon E5-2620 v2

processors and 128GB DRAM. We implemented Generic and

Intra-host TLM versions of pre-copy in the KVM/QEMU [9]

virtualization platform on Linux. We modified QEMU’s tra-

ditional pre-copy algorithms, with no changes to the guest

operating system. Each experiment was repeated at least five

times on idle templated VMs to compute average values.

As shown in Figure 5 and Figure 7, we have multiple

metrics involved in this evaluation for Generic and Intra-host

TLM: (a) represents the system memory before executing

any QEMU (Q) or VM. (b) signifies the system memory

usage after booting a VM using Q. (c) illustrates the system

memory usage after initiating a new Q’ in listening mode.

(d) showcases the system memory usage after live migration,

where Q, Q’, VM, and VM’ are all alive. Finally, (e) displays

the system memory usage after terminating Q and VM, leaving

only Q’ and VM’ alive.

Though Generic TLM failed to eliminate the delta bump

(c)(d) due to the duplication of delta pages as shown in

Figure 5, Intra-host TLM eliminated the delta bump (c)(d) by

transferring the ownership and avoiding unnecessary copying

as shown in Figure 7. The slight increase in (d) is attributed to

the size of destination QEMU Q’ not because of the copying

overhead.

4. CONCLUSION

In this doctoral symposium report, we addressed the prob-

lem of traditional pre-copy live VM migration techniques

being unaware of memory sharing within the same or differ-

ent hosts, resulting in higher memory and network resource

contention. For effective inter-host migration, we presented

Generic TLM and SLM, which rely on existing Copy-On-

Write (COW) optimizations such as VM templating, KSM,

fork, and others performed by the host/hypervisor, and pre-

serve the COW-shared mapping at the destination after mi-

gration. Additionally, we introduced Intra-host TLM, which

transfers the ownership of the COW-shared base template

and additional delta pages diverging from them without in-

troducing unnecessary copy overhead for effective intra-host

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

10 20 30 40 50

M
em

or
y

Us
ag

e(
M

B)

Number of 1GB VMs

B (a)
B + Q + VM (b)

B + Q + VM + Q' (c)
B + Q + VM + Q' + VM' (d)

B + Q' + VM' (e)

Fig. 7: Intra-host TLM efficiently transfers the ownership

of delta pages within the same host for multiple templated

VMs thereby eliminating the copy overhead and removing the

memory bump (c)(d).

migration. Our evaluation of Generic TLM, Intra-host TLM,

and SLM shows significant reductions in memory footprint, as

well as quicker release of migration resources by minimizing

migration time.

REFERENCES

[1] W. Attaoui, E. Sabir, H. Elbiaze, and M. Guizani, “Vnf and cnf
placement in 5g: Recent advances and future trends,” IEEE Transactions
on Network and Service Management, 2023.

[2] A. Ruprecht, D. Jones, D. Shiraev, G. Harmon, M. Spivak, M. Krebs,
M. Baker-Harvey, and T. Sanderson, “VM live migration at scale,” ACM
SIGPLAN Notices, 2018.

[3] D. Fernando, J. Terner, K. Gopalan, and P. Yang, “Live migration ate
my VM: Recovering a virtual machine after failure of post-copy live
migration,” in Proc. of IEEE Conference on Computer Communications
Workshops Annual Computer Security Applications Conference, 2019.

[4] S. Mubeen, S. A. Asadollah, A. V. Papadopoulos, M. Ashjaei, H. Pei-
Breivold, and M. Behnam, “Management of service level agreements
for cloud services in IoT: A systematic mapping study,” IEEE access,
2017.

[5] A. Verma, P. Ahuja, and A. Neogi, “pMapper: Power and migration
cost aware application placement in virtualized systems,” in Proc. of
Middleware, 2008.

[6] A. Ho, M. Fetterman, C. Clark, A. Warfield, and S. Hand, “Practical
taint-based protection using demand emulation,” in Proc. of the ACM
European Conference on Computer Systems (EuroSys), 2006.

[7] P. Dovgalyuk, N. Fursova, I. Vasiliev, and V. Makarov, “Qemu-based
framework for non-intrusive virtual machine instrumentation and in-
trospection,” in Proc.of the Joint Meeting on Foundations of Software
Engineering, 2017.

[8] J. Wei, L. K. Yan, and M. A. Hakim, “Mose: Live migration based
on-the-fly software emulation,” in Proc. of the 31st Annual Computer
Security Applications Conference, 2015.

[9] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm: the
linux virtual machine monitor,” in Proc. of the Linux Symposium, 2007.

[10] R. Eswaran, M. Yan, and K. Gopalan, “Template-aware live migration
of virtual machines,” in In Proc. of ACM/IEEE Symposium on Edge
Computing (SEC) Workshop on Edge Computing and Communications
(EdgeComm), 2023.

[11] ——, “Tackling memory footprint expansion during live migration of
virtual machines,” in Proc. of International Symposium on Cluster, Cloud
and Grid Computing (CCGrid), 2024.

[12] I. Eidus and H. Dickins, “Kernel Samepage Merging,” https://www.
kernel.org/doc/Documentation/vm/ksm.txt, 2009.

670

