
Reducing Hypervisor Overhead for Virutal Interrupt
Delivery in KVM/ARM Platform

Roja Eswaran
Submitted as a part of Research Proposal Exam (RPE) conducted by Binghamton University on Fall’20

Abstract—With the recent hardware support for virtualization,
low power consumption, low cost, the ARM architecture is getting
a lot of attention from the embedded, server, and networking
market. Unlike x86 architecture, ARM SoC doesn’t have the
sophistication of MRIOV, SRIOV, VT-d so the I/O virtualization
overhead is very evident. The I/O virtualization overhead comes
from two sources: DMA setup and Payload copy, interrupt deliv-
ery. we intend to reduce the overhead due to interrupt delivery to
reap the virtualization hardware benefits the ARM platform has
to offer. our work focus on design, implementation, evaluation of
KVM based Direct Interrupt Delivery (DID) in ARM to deliver
timer interrupts and inter-processor interrupts(IPI) directly to
VM without hypervisor’s intervention thus significantly reducing
the virtualization overhead caused to interrupt delivery.

1. INTRODUCTION

With the increase in the use of ARM platforms in edge, IoT,
mobile, server, and networking areas due to its recent hardware
support for virtualization capabilities, it’s very important to
analyze the virtualization overhead to complement the added
hardware features. The main source of virtualization overhead
comes from CPU, Memory, and I/O workloads. The main
source of I/O virtualization overhead comes from two sources:
setting up DMA operations and copying DMA payloads and
interrupt delivery overhead. As of now, ARM architecture
doesn’t support SRIOV and MRIOV, Our interest is to re-
duce I/O virtualization overhead which comes from interrupt
delivery.

DID on the ARM platform aims to deliver the interrupts di-
rectly to the target VM without intervention by the hypervisor.
Our goals include delivering all interrupts to targeted running
VM from sources such as the timer, IPI, external devices
directly. There should be no VM exits when the interrupts
are delivered to VM.

We should take advantage of ARM’s hardware support to
achieve our goals. First, Interrupt Translation Service (ITS) is
used to route the physical and virtual interrupts from external
physical devices to the targeted VM in the form of Locality-
Specific Peripheral Interrupts (LPI), see Section 2.6. Second,
we are still investigating on direct delivery of timer interrupts
and IPI to the targeted VM.

This is the first work to focus exclusively on direct interrupt
delivery in the ARM Platform. The previous work[4], [5],
[6] optimized KVM according to added hardware virtual-
ization features such as CPU Mode extensions, Virtualiza-
tion Host Extensions (VHE), Virtual Generic Interrupt Con-
troller(VGIC). Especially with VHE[2], ARM shows superior
VM performance versus x86 [4]. Previous DID work on x86

[11] reduces VM exits by a factor of 100 and decreases the
interrupt invocation latency by 80 percent. Hence, it’s evident
that DID in ARM would be an excellent performance booster
to the architecture.

2. BACKGROUND

In this section, we provide brief background on ARM’s
virtualization hardware support features and I/O virtualization
overhead.

A. Exception Levels

The x86 platform has two privilege levels called user and
kernel level across Intel’s root and Non-root mode. In ARM,
Privilege levels AKA exceptions levels have separate hyp
mode(EL2) which has its own set of features more privileged
than previous user mode (EL0) and Kernel-mode (EL1) to take
care of underlying hardware. EL3 is more privileged than EL2
where the firmware runs, see Figure 1. The older KVM/ARM
design [5] split hypervisor called KVM-Split Mode, across two
different exception levels EL1 and EL2. The lowvisor on EL2
does very minimal processing and delegates the bulk of work
to highvisor which runs on EL1 along with the host kernel as
it leverages existing Linux functionalities such as scheduler,
interrupts, timer related functions to avoid redundancy. As a
result, when there is an interrupt, VM running on EL1 exits
and returns to lowvisor which then enters to highvisor to
execute the appropriate interrupt handler function and returns
to lowvisor again. Finally, lowvisor injects the virtual interrupt
to VM and resumes VM execution. Splitting hypervisor across
two exception level doubles the context switch rate. This
problem is solved with the introduction of hardware support
- Virtualization Host Extensions (VHE)[2] where Host Kernel
and Hypervisor run on same exception level - EL2, thus
reducing overhead due to context switch.

B. Interrupt Types

In the ARM platform, Interrupts AKA exceptions can
be either wire-based signals or Message Signaled Interrupts
(MSI/MSI-X)[1]. Private Peripheral Interrupt (PPI), private to
a specific core is wire-based interrupts. PPI on one core is
not visible to others, so the same interrupt numbers can be
used across different cores, for example, Timer Interrupts.
Shared Peripheral Interrupts (SPI) can be either wire-based or
message-based peripheral interrupts, it’s up to the distributor,
see Section 2.3, to decide the target core. SPI and PPI only
differ in their allocation of interrupt numbers by having a



Fig. 1: Exception Levels x86 VS ARM

single interrupt line per SPI, there is a line per PPI per
processor. Software Generated Interrupts (SGI) are mainly
used for inter-processor communication and can be generated
by write operation on SGI register in the distributor. Finally,
Locality Specific Peripheral Interrupts (LPI) is message-based
peripheral interrupts that can be generated with the support of
Interrupt Translation Service (ITS) or by writing on GICR-
SETLPIR register in Redistributor.

C. Generic Interrupt Controller

ARM platform uses Generic Interrupt Controller (GIC)
for interrupts. GIC has three components, see Figure 2. 1)
Distributor - holds all routing and priority information and
provides routing configuration for SPI. 2) Redistributor pro-
vides configuration setting for PPI or SGI and each core has
its redistributor. Redistributor presents the CPU interface with
the highest priority pending interrupts. 3) CPU interface - per
core has its own EOI and ACK register for acknowledgment
and deactivation of interrupts. Like APICv support for virtu-
alization in x86, ARM’s GIC has an additional component
called virtual CPU interface which allows VM to access
interrupt controller registers directly without trapping to the
hypervisor. But delivering the interrupt involves hypervisor in
writing the list register on virtualization control interface to
register pending virtual interrupt for a corresponding physical
interrupt.

D. Timer Virtualization

First, in x86, whenever the guest attempts to program the
timer for the next event, the hypervisor takes control and we
have VM exit. Unlike x86, the ARM platform provides a
dedicated virtual timer for EL1, thus the guest can read/write
its timer register without the hypervisor’s intervention. But the
expiration of the virtual timer generates a physical interrupt
that passes the control to the hypervisor, so we have VM exit
when the interrupt is delivered. Second, in x86, when the inter-
rupt handler completes, VM tries to write on the EOI register
which leads to another VM exit. ARM platform dedicates a
separate EOI register for VM to deactivate interrupts without
trapping to the hypervisor.

Fig. 2: Generic Interrupt Controller with Virtualization hard-
ware support

E. Virtualization Host Extension

Traditionally host kernel runs on EL1 and to have vir-
tualization control, EL1 should depend on the hypervisor
running on EL2 causing additional context switches. The
problem is solved by VHE, see Figure 3 which allows the
unmodified host OS to run along with the hypervisor. VHE is
controlled by Hypervisor Control Register (HCR-EL2). E2H
bit in the register decides whether VHE can be enabled or
not during boot-time. EL0 is now shared between guest and
host applications, EL2 uses TGE bit in the control register to
decide whether the application belongs to host/guest to allot
them appropriate resources. When the interrupt arrives while
executing VM, the hypervisor takes control causing VM exit.
In a traditional system without VHE, the hypervisor needs to
enter EL1 to run interrupt handlers but in VHE such overhead
is eliminated. without VHE there are at least four context
switches between VM exit and VM entry, but with VHE it
is reduced to two.

F. Locality Specific Peripheral Interrupt

LPI interrupts are very different from the other interrupt
types in its life cycle and model. External device interrupts
can be delivered as LPI with the help of ITS or direct write on
one of the re-distributors register. In x86, the posted interrupt
mechanism help in delivering virtual interrupt directly to VM
without hypervisor’s intervention, similarly in ARM LPI is
used for the same effect. Direct delivery of virtual interrupt is
supported from GIC version 4, only LPIs can be routed with
ITS, the other interrupt types(PPI, SPI, SGI) don’t have any
effect on ITS, see Figure 4. ITS being the critical component
of LPI comprises of additional data structures in the memory
such as Device Table(DT), Event Table(ET), Interrupt Transla-
tion Table(ITT), Collection Table(CT), and Virtual Processing
Element Table(vPET) all initialized before enabling ITS by



Fig. 3: Host Kernel runs along with Hypervisor in EL2 with
VHE support

Fig. 4: Physical and Virtual LPI Delivery Flow

the software. The arrived interrupt source has device ID
and Event ID associated with it. Each DT provides Device
Table Entries (DTE) indexed using device ID returns the base
address points to ITT in the memory. The ITT is a collection
of Interrupt Translation Entries (ITE) indexed using event ID
defines physical and virtual interrupts. For physical interrupts,
ITE returns 1) output physical Interrupt ID (pINTID), 2) ICID
for identifying entries in CT to determine the target core to
which the physical interrupt must be delivered. For virtual
interrupts, ITT returns 1) output virtual interrupt ID (vINTID),
2) vPEID that identifies the entry in vPET to determine the
target redistributor which then gives target core, 3) a doorbell
to use if the vCPU is not scheduled.

3. RELATED WORK

To the best of our knowledge, no one has tried direct
interrupt delivery on the ARM platform before. In x86, DID
work[11] removes most of the VM exits due to interrupt
dispatches and EOI notification for SRIOV devices, para-
virtualized devices, and timers. They achieve this by leverag-
ing IOAPIC’s interrupt remapping table to avoid misdelivery
of direct interrupts and employs a self-IPI mechanism to inject
virtual interrupts, which enables direct EOI writes without
causing priority inversion among interrupts.

Fig. 5: Delivering Timer interrupt and IPI directly with VT-d

Directvisor[3] which leverages intel’s posted interrupt
mechanism to deliver timer interrupts and IPI directly to VM
without hypervisor’s intervention. Physical interrupts always
cause VM exits to let hypervisor gain control over the hard-
ware resources. For timer interrupts, directvisor configures lo-
cal APIC to deliver posted interrupt notification vector instead
of the regular timer interrupt vector when the timer expires.
Directvisor also disables VM exits due to read/write operations
to local APIC’s initial count register, divide configuration reg-
ister, and HLT instruction. It also removes emulation overhead
due to HLT, being the sensitive instruction, and lets the guest
idles on the physical core directly. For IPI, directvisor removes
VM exit due to write in per-CPU interrupt command register
and as it dedicates each guest with dedicate core for vCPU,
vCPU directly sends IPI to each other without hypervisor’s
emulation with the help of posted interrupt notification, see
Figure 5.

The ARM platform doesn’t have sophisticated hardware and
extremely different from x86, we believe our work would have
a major impact in reducing overhead in I/O interrupt delivery
path.

4. PROPOSED DIRECT INTERRUPT DELIVERY SCHEME

A. Overview

In ARM Platform, we don’t have to worry about VM exits
due to timer register read/write and EOI, ACK operations as
VM has required hardware support to achieve above opera-
tions without hypervisor’s intervention. The big challenge is
delivering the interrupts to target VMs without getting caught
to hypervisor. It’s important to analyze interrupts from three
sources, interrupt from external devices, emulated or virtual
devices and local interrupts. In this section, we will discuss
how these interrupts can be delivered with zero or minimum
VM exits.

B. Disabling VM exits and Polling overhead due to WFI

The traditional polling overhead due to Wait for Interrupt
(WFI) emulation by the hypervisor is 164us. Whenever vCPU



Fig. 6: NIC delivers interrupt in the form of SPI

is expecting any interrupts, it executes WFI to get into the low
power or idle mode. As WFI is privileged instruction, it causes
a trap to EL2. Now hypervisor emulates WFI instruction by
continuously polling on physical core and wakeup vCPU once
new interrupt arrives. If we dedicate a physical core for a
vCPU, disable VM exits on WFI and let the physical CPU
idles in EL1 context, we can avoid VM exit and polling
overhead by the hypervisor.

C. External Device Interrupt

For external devices such as NIC, even though ARM shows
the same bandwidth rate for Bare-Metal and VM, the CPU
utilization is very high in VM(see Section 5). As ARM has
the support of IOMMU, one way to reduce such overhead is
with device passthrough of NIC to VM with VFIO drivers. But
VFIO drivers get along only with PCI devices to achieve the
passthrough. The Jetson, being the embedded SoC integrates
a Realtek RTL8211FDI Gigabit Ethernet controller. The on-
module Ethernet controller that supports 10 or 100 or 1000
Gigabit Ethernet, unfortunately, is not a PCI device[8]. As
VFIO device platform driver and QEMU/VFIO doesn’t sup-
port physical embedded device especially from Realtek for
now, passing through NIC to VM is not attainable in Jetson.

Traditional interrupts from NIC are delivered in the form of
SPI which involves VM exits during the interrupt delivery,
see Figure 6 . Whenever the packet arrives, NIC asserts
physical interrupt(1), GIC delivers SPI to the VM’s vCPU
running on physical cores(2) which causes a VM exit. The
hypervisor(3) then acknowledges the physical interrupt that
makes the interrupt active and inserts virtual interrupt to the list
of pending interrupts for the target vCPU(4). When this virtual
interrupt has sufficient priority, the hypervisor writes into the
list register - vINTID and pINTID and HW bit to tie virtual
interrupt with physical interrupt. When vCPU is running, it
takes the pending interrupt from the virtual CPU interface(5)
and executes the corresponding interrupt handler function.
Once vCPU completed the handler function, it deactivates the
virtual interrupt and tied physical interrupt by writing on EOI
register(6).

Fig. 7: NIC delivers interrupt in the form of LPI

LPI along with ITS helps us achieve direct delivery of
interrupt to target VM, if VM is not running the control is
passed to the hypervisor to execute the doorbell interrupt.
Any interrupts other than LPI should get trapped to hypervisor
while delivering to VM.By delivering interrupts from NIC as
LPI instead of SPI, we can completely remove hypervisor from
critical path, see Figure 7.

D. Timer Interrupt

Timer interrupts are critical for all the process as it de-
termines how long the process owns CPU, once the process
expired its time slice, it gives up CPU, OS should program
the timer chip to make sure the process doesn’t exceed their
time slice for upcoming events. The big challenge in ARM
is delivering the timer interrupt without getting caught by the
hypervisor. The timer interrupt can be taken place either in
the form of PPI or SPI, see Figure 8. The guest can program
its virtual timer register without trapping(1). Once the virtual
timer expires, a physical interrupt is generated in the form
of SPI or PPI(2). The physical interrupt causes VM exit(3)
and traps to the hypervisor. The hypervisor then determines
the interrupt belongs to VM and program the corresponding
virtual CPU interface with vINTID and pINTID(4). When
the target VM is scheduled, VM acknowledges the pending
virtual interrupt and starts executing the interrupt handler(5).
Once VM finished its task, it deactivates both virtual and
underlying physical interrupt by writing on EOI register on
virtual CPU interface(6). Our kernel-level latency test, see
Section 5, shows that the invocation latency of VM is four
times higher than what we experienced with Bare-Metal so,
we are still investigating the efficient way of delivering timer
interrupt without hypervisor interference.

E. Virtual Device Interrupt

Two cores communicate with each other with the help of
IPI to maintain coherency in states. In ARM, SGI is used for
generating IPI by writing on the SGI register on Redistributor.
To generate SGI targeting on EL2, write must be performed on
ICC-SGI1R-EL1 register. The interrupt Routing Mode(IRM)
field in the SGI register gives the routing information for the



Fig. 8: Timer Interrupt delivered as SPI or PPI

Fig. 9: SGI delivery between two vCPU

CPU interface. Setting IRM-1: interrupt is sent to all the cores
except for the originating core, IRM-0: interrupt is sent to
aff3.aff2.aff1.Target List, where the target list is encoded as 1
bit for each affinity 0 nodes under aff1. This means that the
interrupt can be sent to a maximum of 16 PEs, which might
include the originating PE. Once the SGI is generated by the
redistributor, it has to again go through the distributor to reach
the target core.

The interrupts generated by virtual devices are known as
virtual interrupt. Figure 9 shows the IPI delivery between
vCPUs. Let’s consider a VM with two vCPU, vCPU 0 and
vCPU 1, VCPU 0 wishes to send IPI to vCPU 1. When vCPU
0 attempts to write on the SGI register(1) there is a trap to
the hypervisor(2). The hypervisor emulates a virtual distributor
which holds all the routing related information and returns to
VM(3). The virtual distributor then writes to list register(4)
of the CPU on which the target vCPU 1 runs. The vCPU 1
should see the virtual IPI when it is scheduled to run next

Fig. 10: SGI delivery between two pCPU and vCPU

time.
Figure 10 shows pCPU 0 sending IPI for vCPU 1 that

runs on pCPU 1 for maintenance purposes. CPU 0 sends
physical SGI targeting CPU 1. The physical interrupt always
causes VM exit(1) and the control is passed to the hypervisor.
The hypervisor realizes the interrupt belongs to vCPU 1 and
writes on the virtual CPU interface of CPU 1(2). When the
vCPU 1 is scheduled again, it should receive virtual IPI when
the priority hits(3). In this case, there is no need for virtual
distributor emulation as CPU 0 holds control over physical
GIC yet hypervisor is still involved in both cases. We are still
investigating the effective way to achieve IPI delivery without
any emulation or hypervisor overhead.

5. PERFORMANCE EVALUATION

A. Evaluation Methodology

As the ARM servers available on market are very expensive,
we decided to conduct our experiment on NVIDIA’s Jetson
Xavier NX [9]. Jetson has 6-core NVIDIA Carmel ARMv8.2,
64-bit CPU, 6 MB L2 + 4 MB L3, and also has the support
of VHE, gigabit ethernet. The Host kernel is the customized
NVIDIA’s Jetpack of version 4.9.140-tegra and the guest runs
Vanilla VM of kernel version 5.9.9. We disabled GUI in
both host and guest, all the 6 cores must be running at max
frequency as GUI and on-demand CPU scaling governors
reported higher timer interrupt latency values. We tested
Network Performance using ping and iperf. To evaluate timer
interrupt latency, we created our kernel-level timer interrupt
latency test[7] using high-resolution timer[10].

B. Network Performance

We used iperf 2.0.10 to measure the network bandwidth.
The server is Raspberry-pi 4 model B which has gigabit
ethernet support, the client is Jetson, both are connected using
LAN which supports 1Gbps. While running as Bare-Metal or
VM , Jetson shows the same bandwidth of 942Mbps but the
CPU utilization measured using mpstat shows Bare-Metal has



Fig. 11: Kernel Level Timer Interrupt Latency Test values
plotted against Cumulative Probability

7.6% and VM utilized 25.4% which is almost as three times
as Bare-Metal.

Ping tool is used to measure the network latency. With the
same experimental setup, Bare-Metal has average latency of
0.509 ms while VM has 1.632 ms almost as twice as Bare-
Metal.

C. Kernel-Level Timer Interrupt Latency Test

Host and Guest have their dedicated core for the latency
test to avoid interference from the scheduler and hypervisor.
The timer interrupt latency test was run for 20 seconds
with an inter-interrupt interval of 200 us. We plotted our
output latency values with cumulative distribution function, the
median timer interrupt latency value for bare-metal and VM
is 3.9us and 14.8us respectively. These values substantiate our
problem statement and eliminating the factors that cause this
overhead in interrupt delivery would significantly improve the
performance of VM, see Figure 11.

6. CONCLUSION

We have thoroughly studied the state-of-art interrupt deliv-
ery mechanism, but we haven’t found any work reducing the
delivery overhead due to I/O virtualization. The groundwork
on literature and our experiment on Jetson helps us understand
there exists a real problem with interrupt delivery mechanism
even though the ARM platform has various virtualization
hardware features. We believe our work would have a potential
impact on ARM platforms as embedded SoCs can’t afford to
interrupt latencies while running critical real-time tasks.

REFERENCES

[1] Arm Limited. Exception Types ARM. https://developer.arm.com/
architectures/learn-the-architecture/exception-model/exception-types.

[2] Arm Limited. Virtualization Host Extensions-ARM.
https://developer.arm.com/architectures/learn-the-architecture/
aarch64-virtualization/virtualization-host-extensions.

[3] Kevin Cheng, Spoorti Doddamani, Yongheng Li, Kartik Gopalan, and
Tzi-Cker Chiueh. Directvisor: Virtualization for bare-metal cloud. In
Proceedings of the ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments, VEE ’20, New York, NY, USA,
2020. ACM.

[4] Christoffer Dall and Shih-Wei Li and Jason Nieh. Optimizing the Design
and Implementation of the Linux ARM Hypervisor. In 2017 USENIX
Annual Technical Conference (USENIX ATC ’17), page 304–316, 2017.

[5] Christoffer Dall, Shih-Wei Li, Jin Tack Lim, Jason Nieh, and Georgios
Koloventzos. Arm virtualization: Performance and architectural implica-
tions. In Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA 2016), page 304–316, 2016.

[6] Christopher Dall and Jason Nieh. Kvm/arm: The design and implementa-
tion of the linux arm hypervisor. In Proceedings of the 19th international
conference on Architectural support for programming languages and
operating systems, pages 333–348, 2014.

[7] Kevin Cheng and Roja Eswaran. Kernel Level Timer Interrupt Latency
Test. https://github.com/osnetsvn/Latency Test.git.

[8] NVIDIA Limited. Jetson Product Datasheet. https://developer.nvidia.
com/jetson-xavier-nx-product-design-guide-v10/.

[9] NVIDIA Limited. Jetson with Virtualization Host Extensions. https:
//www.nvidia.com/en-us/autonomous-machines/embedded-systems/
jetson-xavier-nx/.

[10] Thomas Gleixner. High Resolution Timer. https://lwn.net/Articles/
167897/.

[11] Cheng-Chun Tu, Michael Ferdman, Chao-tung Lee, and Tzi-cker Chi-
ueh. A comprehensive implementation and evaluation of direct interrupt
delivery. In Proceedings of the 11th ACM SIGPLAN/SIGOPS Interna-
tional Conference on Virtual Execution Environments, VEE ’15, pages
1–15, New York, NY, USA, 2015. ACM.


