Template-aware Live Migration of Virtual Machines

Roja Eswaran, Mingjie Yan, Kartik Gopalan
{reswaral,myan28, kartik}@binghamton.edu
Computer Science, Binghamton University
Binghamton, NY, USA

ABSTRACT

One of the key challenges of edge computing is working with a lim-
ited amount of resources available at the edge, especially memory
and bandwidth. Virtual Machine (VM) Templating is a technique to
start multiple VM instances quickly from a shared pre-configured
read-only image (or template). The new VM instances share the
memory of the template in a copy-on-write (COW) manner. In edge
computing platforms, VM templating can help to reduce the collec-
tive memory footprint and deployment time of multiple VMs. Live
migration of VMs can also improve task placement on edge nodes
for latency reduction, service availability, and cost-effectiveness.
However, existing live migration techniques fail to maintain mem-
ory sharing among multiple templated VMs that are migrated to a
common destination. Consequently, identical pages at the source
are replicated several times at the destination, increasing memory
pressure on the destination node, network traffic during migration,
and total migration time. Lack of templating awareness can also
trigger migration failure if the destination lacks sufficient mem-
ory to accommodate the increased memory footprint. To address
this shortcoming of live migration, we introduce Template-aware
Live Migration (TLM), which preserves preexisting COW memory
sharing between templated VMs that are migrated to a common
destination machine. Specifically, TLM ensures that multiple virtual
pages from different VMs that are mapped to the same template
page at the source are mapped to the same page at the destination.
We implement TLM on the QEMU/KVM virtualization platform and
demonstrate a significant reduction in memory footprint, shorter
migration time, and reduced network traffic.

ACM Reference Format:

Roja Eswaran, Mingjie Yan, Kartik Gopalan. 2023. Template-aware Live
Migration of Virtual Machines. In The Eighth ACM/IEEE Symposium on Edge
Computing (SEC 23) EdgeComm Workshop, December 69, 2023, Wilmington,
DE, USA. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3583740.
3626812

1 INTRODUCTION

Multi-access edge computing nodes offer an attractive option for
executing tasks where users require low latency and high band-
width [13, 16]. Virtual machines (VMs) can ensure both isolation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SEC °23, December 6-9, 2023, Wilmington, DE, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0123-8/23/12...$15.00
https://doi.org/10.1145/3583740.3626812

and efficient resource utilization at the edge computing infrastruc-
ture [5, 15, 26]. Live migration [4, 10] is a key technology in an
edge computing infrastructure that transfers running VMs from
one physical node to another. It is widely used for a variety of
purposes, such as load balancing [3, 8, 20], meeting service level
agreements [17], energy savings [22], and seamless maintenance
of physical edge nodes.

Multiple VMs that run different components of a distributed
application may be colocated on the same physical node to reduce
their inter-VM communication costs [14, 24]. The colocated VMs
may run different instances of same guest operating system (OS) or
similar applications. VM templating [1, 12, 18, 25] is one approach
to quickly instantiate multiple lightweight VMs from a common
read-only image, called a template, which is shared copy-on-write
(COW) memory among the VM instances [2, 21]. Templated VM
instances may often need to be migrated together to the same
destination node for various reasons. For example, templated VM
instances that run different components of a distributed application
may require migration to the same destination node to maintain
low inter-VM communication latency or to meet other QoS tar-
gets. Additionally, physical node availability, hardware availability,
and multi-tenancy limitations may necessitate the migration of
templated VM instances to the same destination node.

Unfortunately, current live VM migration techniques do not con-
sider page sharing among templated VM instances that are being
migrated to the same destination. As a result, shared pages are
transferred and replicated multiple times, as if they were separate
pages, resulting in an increase in memory pressure at the destina-
tion node. This can also lead to migration failures when the edge
destination lacks sufficient memory to accommodate the expanded
memory footprint of the VMs that were comfortably co-located at
the source. Replication of previously shared pages among VMs also
results in longer migration time and increased network traffic.

Previous approaches to reduce the transfer of duplicate pages
during live migration (such as [5, 6, 9, 15, 26] among others) use
content-based hashing to detect identical pages and avoid their
retransmission. However, they do not identify or maintain preexist-
ing COW mappings among VMs when pages are transferred to the
destination. Additionally, while hashing may be used to identify
identical pages that are not COW-shared, it is unnecessary and
computationally expensive for COW-shared pages.

We address this problem of memory footprint expansion of tem-
plated VMs instances as they are live migrated together to a com-
mon destination node. Our contributions are as follows:

(1) We identify and demonstrate the problems caused by live
migration being unaware of underlying page sharing among
templated VM instances, leading to a larger memory foot-
print at the destination, longer total migration time, and
higher network traffic.

https://doi.org/10.1145/3583740.3626812
https://doi.org/10.1145/3583740.3626812
https://doi.org/10.1145/3583740.3626812

SEC 23, December 6-9, 2023, Wilmington, DE, USA

M1 |VM2 |VM3 [« [VMn

1
ddn

d2 43
RAM

Figure 1: VM Templating: Multiple VMs can be started from
a common shared template to reduce their startup times and
initial memory footprint. Memory pages that are dirtied by
a VM (represented by deltas dk) are not shared.

Host OS

(2) We present Templating-aware Live Migration (TLM) which
migrates templated VM instances to a common destination
while maintaining COW memory sharing with the base tem-
plate. We also discuss potential ways to account for other
forms of page sharing during live migration besides those
due to templating.

(3) We implement prototype of TLM in KVM/QEMU [11] virtu-
alization platform and evaluate it using several benchmarks.
Besides maintaining preexisting page sharings among tem-
plated VMs at the destination machine, TLM reduces the
total migration time by up to 95.37% and network traffic by
up to 92.15%.

In the rest of this paper, we first present the background on
pre-copy live migration techniques and demonstrate the problem.
Next, we present the design and implementation of TLM followed
by its evaluation. The paper concludes with a discussion of related
work and summary of results.

2 BACKGROUND AND PROBLEM
DEMONSTRATION

VM Templating: Instantiating a VM from scratch typically takes
a long time because it involves initialization of software, guest OS,
and virtual hardware, including time to load the corresponding
contents to memory from the disk. VM templating allows multiple
new VM instances to be quickly instantiated from a single pre-
checkpointed VM image (or template). Figure 1 shows the steps
involved in instantiating VMs from a template image. First step is to
save a custom VM template as a snapshot of a pre-booted VM that
is pre-initialized with necessary software. The template image can
be pre-loaded into memory to reduce disk access latency. Next step
is to quickly instantiate multiple VM instances from the common
template image by mapping the base template image COW into the
memory of each new VM instance. This is essentially a variant of
a typical checkpoint-restore operation, where we checkpoint the
base image once and restore it multiple times for concurrent VM
instances.

Roja Eswaran, Mingjie Yan, Kartik Gopalan

3500 T T T T T
Source I o
3000 b Destination i
o -
= 2500 E
(9]
2 2000 | .
1]
>
> 1500 E
o
€
0 1000 E
=
500 | E
0 J || ||
1 2 3 4 5

Number of 8GB VMs

Figure 2: Memory footprint increase at destination when the
templated VMs are migrated using generic pre-copy

Pre-copy Live Migration: Pre-copy live migration [4] is the
most common technique to migrate VMs running on one physical
host (called the source) to another physical machine (called the
destination). It works by first transferring the VM’s memory pages
to the destination, even as the VM continues running at the source,
and then transfers the CPU execution state at the end; hence the
name pre-copy which means to transfer memory before CPU state.
But, as the VM’s memory is being transferred, its virtual CPUs
(VCPUs) may write to previously transferred pages, thus dirtying
them again. Such dirtied pages are retransmitted over multiple
iterations, until very few dirtied pages remain, at which point the
VM is paused, its execution state and remaining dirty pages are
transferred, and the VM is resumed at the destination.

Problem Demonstration: In Figure 2, we show the problem
that arises during the migration of templated VMs using pre-copy.
The X-axis represents the number of VMs instantiated from a shared
template that are being migrated, and the Y-axis represents their
collective memory footprint as measured by the free command in
Linux. Prior to migration, we measured the memory usage of the
templated VMs at the source. Subsequently, we measured memory
usage again at the destination after migration. Since the generic
pre-copy live migration is unaware of page sharing among tem-
plated VMs, it redundantly transfers and replicates identical pages,
breaking the underlying COW sharing. Figure 2 shows that the lack
of templating awareness increases the total memory footprint at
the destination, the network traffic during migration, and the total
migration time.

3 TEMPLATE-AWARE LIVE MIGRATION (TLM)

Traditional pre-copy live migration is unaware of the underlying
COW page sharing among templated VMs. Hence it ends up trans-
ferring the shared base pages of the template multiple times. We
propose Template-aware Live Migration (TLM) which addresses
this shortcoming of pre-copy migration by ensuring that multiple
templated VM instances maintain their COW page sharing with the
base template even at the destination node and transfers only the
delta pages that differ among various VM instances. TLM requires
that we first track delta (or dirty) pages for VM instances before

Template-aware Live Migration of Virtual Machines

migration. Then, during TLM, only the delta pages are transferred
for each instance. We describe these steps below in greater detail.

Delta Tracking before Migration: As mentioned earlier, the
common template image is COW-mapped into each VM’s memory.
The template image could also be pre-loaded into the host’s memory
(such as into tmpf's [19]) to minimize access latency. When a VM
tries to write to a COW-mapped page, a write fault is triggered and
the hypervisor allocates a new private page into which the original
page is copied and the VM can write to. We call these new pages
delta pages, which are stored separately from the shared template.

TLM uses a dirty page tracking mechanism [7] to keep track of
the delta pages of the templated VMs before the migration begins [8].
Templated VMs have COW access to the base pages of the template,
so a write by a VM instance to a COW-shared page triggers a trap
to the hypervisor (a KVM kernel module in QEMU/KVM), which
updates a dirty bitmap, and finally grants write permission on the
trapped page. Any subsequent writes to the same page by the VM
are no longer trapped until the migration starts.

Live Migration: We assume that the base template image is
already accessible at the destination over network storage; if not, it
could be transferred to the destination once before live migration
begins. Initially, at the destination, TLM maps the base template im-
age COW into the memory of each new VM instance. As illustrated
in Figure 3, TLM then exclusively transfers the delta pages from the
source. These delta pages replace the corresponding COW-mapped
pages at the destination, resulting in new memory allocations for
the delta pages. In each round of TLM, a user-space per-VM man-
ager process, called QEMU, fetches the latest dirty bitmap from
KVM, similar to the conventional pre-copy approach. The delta
pages in each round are subsequently marked as read-only and
sent to the destination. Eventually, downtime is initiated when a
minimal number of delta pages remain. At this point, the VCPUs are
paused, the remaining VM states are transferred, and the templated
VM instances are then resumed at the destination. Multiple VMs
that started from the same base template are migrated concurrently.
With TLM, these VMs preserve the same collective memory foot-
print at the destination as they did the source. When compared to
traditional pre-copy migration, TLM has a shorter total migration
time because, besides the one-time transfer of base template image,
only the delta pages need to be transferred to the destination during
live migration.

Addressing other forms of inter-VM page sharing during
live migration: While the above TLM approach works well in
efficiently live migrating multiple templated VMs, we realized that
the problem of sharing-awareness in live migration extends beyond
just templated VMs. Specifically, TLM does not account for pages
shared among VMs due to other memory sharing mechanisms
besides templating, such as memory deduplication performed by
Kernel Samepage Merging (KSM) [2] in Linux, or simple COW
mappings due to process fork and file I/O operations. Figure 4
shows that memory expansion problem during live migration exists
even for regular non-templated VMs, though to a lesser extent than
templated VMs shown in Figure 2. Out future work will address
mechanisms to retain all existing COW sharing during migration
irrespective of the underlying memory optimization technique.

SEC 23, December 6-9, 2023, Wilmington, DE, USA

M1 |VM2|VM3|- [VMn M1 VM2 |ym3)... |VMn

/ \ L/

Host OS
d1i
Host OS 4 dn RAM

d3, RAM 43

Source Destination

Migration

Figure 3: Template-aware migration works by migrating only
the delta pages during migration. The shared VM template is
available to the destination either over a networked storage
or transferred ahead of time before migration begins.

3500

T T
Source =
3000 | Destination 1

2500 B
2000 i

1500 [

1000 [b
“l ﬂ _
0
1 2 3 4

Number of 8GB VMs

Memory Usage(MB)

Figure 4: Memory footprint expansion problem in regular
non-templated VMs at destination after live migration using
generic pre-copy.

4 EVALUATION

We evaluated the performance of TLM against generic pre-copy
live migration. Our experimental setup consists of three machines
with two Intel Xeon E5-2620 v2 processors and 128GB DRAM. We
implemented TLM versions of pre-copy in the KVM/QEMU [11]
virtualization platform on Linux. We modified QEMU’s default
pre-copy algorithms, with no changes to the guest operating sys-
tem. Each experiment was repeated at least five times on idle VMs
to compute average values. Our key performance metrics are as
follows:

e Memory Usage: The collective memory footprint of the
VMs at the source (before migration) and destination (after
migration). This is measured using the free command and
includes the memory used by both the QEMU processes and
the VMs.

o Total Migration Time: The period which refers to how long
it takes to move a virtual machine from one place to another.
When moving a single VM using the pre-copy, the total
migration time is measured from when the migration starts
on source to when the virtual machine is up and running on

SEC 23, December 6-9, 2023, Wilmington, DE, USA

3500 T T T T T
Source mEE—. @
3000 | Destination(Generic Pre-copy) C—1 i
Destination(TLM Pre-copy) =2
€ 2500 | M 1
a
2 2000 | R
w
-]
> 1500 | -
o
€
o 1000 | i
=
500 - -
0 J L | INEN BN

1 2 3 4 5
Number of 8GB VMs

Figure 5: Memory footprint of templated VMs at the source
before migration and destination after migration using
generic and TLM pre-copy.

the destination. For moving multiple VMs using pre-copy,
the total migration time is calculated from when the first
virtual machine’s migration begins on the source to when the
last virtual machine’s migration is finished on destination.

e Downtime: The period during which a VM’s execution is
fully suspended during live migration. In pre-copy, downtime
is used to transfer the VM’s remaining dirty pages, I/O device
and VCPU states to the destination.

o Network Traffic Overhead: The total pages transferred
during live migration.

Figure 5 shows the memory footprint of templated VMs migrated
using generic and TLM pre-copy. The X-axis shows the number of
VMs started from the same template, and the Y-axis shows their
memory usage before migration at the source and after migration
at the destination using free command. With increasing number
of VMs, the generic pre-copy results in significant expansion of
memory footprint at the destination since it is unaware of memory
sharing with the underlying template image. Hence it transfers
pages that were shared with the template multiple times in addition
to delta pages. In contrast TLM preserves the original memory
footprint of templated VMs at the destination irrespective of the
number of VMs started using the template.

Figure 6 shows the total migration time of multiple templated
VMs using generic and TLM pre-copy. The X-axis indicates the
number of VMs booted from the same template to be migrated
concurrently. The Y-axis shows the total migration time. TLM re-
duces the total migration time up to 94% when considering only
the transfer of delta pages.

Figure 7 shows that the downtime experienced during live migra-
tion of templated VMs is slightly longer (by a few tens of millisec-
onds) than that of generic VMs, even when the same number of dirty
pages are transferred within the downtime window. The X-axis
shows the number of pending pages transferred during the down-
time. The Y-axis shows the downtime with respect to the pending
page size. Upon closer examination of the code, we identified that
the increased downtime is influenced by the destination component
of live migration. After the final packet arrives at the destination,

Roja Eswaran, Mingjie Yan, Kartik Gopalan

40000

Generic Pre-copy —
35000 - TLM Pre-copy 4

30000

25000

20000 b

15000 b

10000 b

Total Migration Time (ms)

5000 b

0 - -
1 2 3 4 5

Number of 8GB VMs

Figure 6: Total migration time of multiple VMs started from
the same template and migrated concurrently using generic
and TLM pre-copy.

120

T T T
Generic Pre-copy .
110 | TLM Pre-copy e «® e b

90 - o A
80
70 °s b
60 - . |
50 - R .]
w0k e % J

Downtime(ms)

.
e, s 1
20 | 1

10 L L L L L L L L L
0 1 2 3 4 5 6 7 8 9 10

Pending Size(MB)

Figure 7: Downtime of multiple templated VMs migrated
using generic and TLM pre-copy.

the vm_start() function to resume the VM can introduce variable
overhead during the migration of both templated and generic VMs.
However, in the case of templated VMs, the vm_start () function
tends to result in higher resumption times more frequently. Ad-
dressing the downtime issue involves the VCPU thread invocation
which will be addressed in our future work. Nonetheless, the down-
time can still be minimized by configuring a smaller pending page
count threshold for initiating the downtime phase.

Figure 8 shows the total 4KB pages transferred of multiple tem-
plated VMs using generic and TLM pre-copy. The X-axis indicates
the number of templated VMs to be migrated concurrently. The
Y-axis shows the total pages transferred during live migration. TLM
significantly reduces the total pages transferred since it only trans-
fers the delta pages.

5 RELATED WORK

Several VM templating techniques have been developed to effi-
ciently launch multiple lightweight VMs from a common COW
template image [12, 18, 23, 25]. VM templating can reduce the mem-
ory pressure and instantiation time of VMs on resource constrained

Template-aware Live Migration of Virtual Machines

900000

Genelric Pre—colpy \:II

800000 - TLM Pre-copy mmmmm b

700000 - 1
600000 - 1
500000 - 1

400000 - 1

300000 - 1
200000 - 1
100000 ’_|_ b
0 m N
1 2 3

4 5
Number of 8GB VMs

Total Pages Transferred

Figure 8: Total pages transferred of multiple VMs started
from the same template and migrated concurrently using
generic and TLM pre-copy.

edge computing nodes. To the best of our knowledge, these tech-
niques lack support for live migration for templated VMs while
maintaining COW sharing at the destination. Our TLM approach
addresses this gap. Several studies have also attempted to mini-
mize the migration time of containers or VMs in distributed edge
platforms [5, 15, 26]. These efforts have employed techniques like
delaying the transfer of writable working sets, using lightweight
file systems, applying delta encoding, compressing data, and dedu-
plicating identical pages. However, unlike TLM, these works do
not focus on preserving COW page sharings at the destination to
prevent an increase in memory footprint.

6 CONCLUSION

In this paper, we addressed the problem that traditional live VM mi-
gration techniques do not maintain page sharing among templated
VM instances that are migrated to the same destination nodes on
edge platforms. This leads to increased memory footprint at a re-
source constrained destination node, longer migration time, and
increased network traffic. We presented the design, implementation,
and evaluation of a technique called TLM for pre-copy that retains
the templating benefits at the destination after the live migration.
Our evaluation of TLM on the QEMU/KVM platform shows that
TLM not only avoids memory footprint expansion at the destination
but also significantly reduces the migration time and the amount
of data transferred. Our future work aims to extend TLM to incor-
porate other forms of inter-VM page sharing besides those due to
templating.

7 ACKNOWLEDGMENTS

We'd like to thank Kevin Cheng and Yongheng Li for their valuable
contribution during the implementation of TLM. This work was
supported in part by Industrial Technology Research Institute (ITRI),
Taiwan.

REFERENCES

[1] [n.d.]. Template-Patch. http://patchwork.ozlabs.org/project/qemu-devel/list/.
[2] Andrea Arcangeli, Izik Eidus, and Chris Wright. 2009. Increasing memory density
by using KSM. In Proc. of the Linux Symposium.

—

3]

—_
=)

[o

[10

[11

[12

(13

[14]

jpory
&

[16

[17

[18

[19

[21

[22

[23

[24]

[25

[26]

SEC 23, December 6-9, 2023, Wilmington, DE, USA

Wissal Attaoui, Essaid Sabir, Halima Elbiaze, and Mohsen Guizani. 2023. VNF and
CNF Placement in 5G: Recent Advances and Future Trends. IEEE Transactions on
Network and Service Management (2023).

Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Chris-
tian Limpach, Ian Pratt, and Andrew Warfield. 2005. Live migration of virtual
machines. In Proc. of USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI).

Rohit Das and Subhajit Sidhanta. 2021. LIMOCE: Live Migration of Containers in
the Edge. In Proc. of International Symposium on Cluster, Cloud and Grid Computing
(CCGrid).

Umesh Deshpande, Wang Xiaoshuang, and Kartik Gopalan. 2011. Live Gang Mi-
gration of Virtual Machines. In Proc. of High Performance Parallel and Distributed
Computing (HPDC).

fatalerrors. [n.d.]. Dirtybitmap. https://www.fatalerrors.org/a/qemu-
synchronization- dirty-pages-principle.html.

Dinuni Fernando, Jonathan Terner, Kartik Gopalan, and Ping Yang. 2019. Live
migration ate my VM: Recovering a virtual machine after failure of post-copy live
migration. In Proc. of IEEE International Conference on Computer Communications
(INFOCOM).

Diwaker Gupta, Sangmin Lee, Michael Vrable, Stefan Savage, Alex C Snoeren,
George Varghese, Geoffrey M Voelker, and Amin Vahdat. 2010. Difference Engine:
Harnessing Memory Redundancy in Virtual Machines. In Communications of the
ACM. ACM New York, NY, USA.

Michael R Hines, Umesh Deshpande, and Kartik Gopalan. 2009. Post-copy live
migration of virtual machines. ACM SIGOPS Operating Systems Review (2009).
Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. 2007. kvm:
the Linux Virtual Machine Monitor. In Proc. of the Linux Symposium.

Horacio Andrés Lagar-Cavilla, Joseph Andrew Whitney, Adin Matthew Scan-
nell, Philip Patchin, Stephen M Rumble, Eyal De Lara, Michael Brudno, and
Mahadev Satyanarayanan. 2009. SnowFlock: Rapid Virtual Machine Cloning for
Cloud Computing. In Proc. of the ACM European Conference on Computer Systems
(EuroSys).

Li Lin, Xiaofei Liao, Hai Jin, and Peng Li. 2019. Computation offloading toward
edge computing. Proc. of IEEE International Conference on Cloud Computing
(2019).

Quang-Trung Luu, Sylvaine Kerboeuf, and Michel Kieffer. 2022. Admission
control and resource reservation for prioritized requests with guaranteed SLA
under uncertainties. IEEE Transactions on Network and Service Management
(2022).

Lele Ma, Shanhe Yi, Nancy Carter, and Qun Li. 2019. Efficient Live Migration
of Edge Services Leveraging Container Layered Storage. IEEE Transactions on
Mobile Computing (2019).

Pavel Mach and Zdenek Becvar. 2017. Mobile edge computing: A survey on
architecture and computation offloading. Proc. of IEEE International Conference
on Communications(ICC) (2017).

Saad Mubeen, Sara Abbaspour Asadollah, Alessandro Vittorio Papadopoulos,
Mohammad Ashjaei, Hongyu Pei-Breivold, and Moris Behnam. 2017. Manage-
ment of service level agreements for cloud services in IoT: A systematic mapping
study. IEEE access (2017).

Open Infrastructure Foundation. [n.d.]. Kata Containers. https://katacontainers.
io/.

Christoph Rohland. [n.d.]. Tmpfs. https://docs.kernel.org/filesystems/tmpfs.
html.

Adam Ruprecht, Danny Jones, Dmitry Shiraev, Greg Harmon, Maya Spivak,
Michael Krebs, Miche Baker-Harvey, and Tyler Sanderson. 2018. VM Live Migra-
tion At Scale. ACM SIGPLAN Notices (2018).

Jonathan M. Smith and Gerald Q Maguire Jr. 1988. Effects of copy-on-write
memory management on the response time of UNIX fork operations. Computing
Systems (1988).

Akshat Verma, Puneet Ahuja, and Anindya Neogi. 2008. pMapper: Power and
Migration Cost Aware Application Placement in Virtualized Systems. In Proc. of
Middleware.

Michael Vrable, Justin Ma, Jay Chen, David Moore, Erik Vandekieft, Alex C
Snoeren, Geoffrey M Voelker, and Stefan Savage. 2005. Scalability, Fidelity, and
Containment in the Potemkin Virtual Honeyfarm. In Proc. of ACM Symposium
on Operating Systems Principles (SOSP). 148-162.

Jian Wang, Kwame-Lante Wright, and Kartik Gopalan. 2008. XenLoop: A transpar-
ent high performance inter-VM network loopback. In Proc. of High Performance
Parallel and Distributed Computing (HPDC).

Kun Wang, Jia Rao, and Cheng-Zhong Xu. 2011. Rethink the Virtual Machine
Template. ACM SIGPLAN Notices (2011).

Zhe Zhou, Xintong Li, Xiaoyang Wang, Zheng Liang, Guangyu Sun, and Guojie
Luo. 2020. Hardware-assisted Service Live Migration in Resource-limited Edge
Computing Systems. In Proc. of ACM/IEEE Design Automation Conference (DAC).

https://www.fatalerrors.org/a/qemu-synchronization-dirty-pages-principle.html
https://www.fatalerrors.org/a/qemu-synchronization-dirty-pages-principle.html
https://katacontainers.io/
https://katacontainers.io/
https://docs.kernel.org/filesystems/tmpfs.html
https://docs.kernel.org/filesystems/tmpfs.html

	Abstract
	1 Introduction
	2 Background and Problem Demonstration
	3 Template-aware Live Migration (TLM)
	4 Evaluation
	5 Related Work
	6 Conclusion
	7 Acknowledgments
	References

